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Abstract

The Varieties of Democracy (V–Dem) project relies on country experts who code a
host of ordinal variables, providing subjective ratings of latent—that is, not directly
observable—regime characteristics over time. Sets of around five experts rate each case
(country-year observation), and each of these raters works independently. Since raters
may diverge in their coding because of either differences of opinion or mistakes, we require
systematic tools with which to model these patterns of disagreement. These tools allow us
to aggregate ratings into point estimates of latent concepts and quantify our uncertainty
around these point estimates. In this paper we describe item response theory models
that can that account and adjust for differential item functioning (i.e. differences in how
experts apply ordinal scales to cases) and variation in rater reliability (i.e. random error).
We also discuss key challenges specific to applying item response theory to expert-coded
cross-national panel data, explain the approaches that we use to address these challenges,
highlight potential problems with our current framework, and describe long-term plans
for improving our models and estimates. Finally, we provide an overview of the different
forms in which we present model output.



The V–Dem dataset contains a variety of measures, ranging from objective—and directly

observable—variables that research assistants coded, to subjective—or latent—items rated

by multiple experts (Coppedge, Gerring, Lindberg, Teorell, Pemstein, Tzelgov, Wang,

Glynn, Altman, Bernhard, Fish, Hicken, McMann, Paxton, Reif, Skaaning & Staton 2014).

Our focus in this paper is on the latter set of measures, which are subjective ordinal items

that a number—typically five—raters1 code for each country-year. Figure 1 provides an

example of one such measure, which assesses the degree to which citizens of a state were

free from political killings in a given year, using a scale from zero to four. This question

includes a substantial subjective component: raters cannot simply look up the answer

to this question and answer it objectively. Indeed, many states take active measures

to obfuscate the extent to which they rely on extra-judicial killing to maintain power.

Furthermore, not only is the evaluation of the latent trait subjective, but raters may

have varying understandings of the ordinal options that we provide to them: Mary’s

“somewhat” may be Bob’s “mostly.” Finally, because this question is not easy to answer,

raters may make mistakes or approach the question using different sources of information

on the topic, some more reliable than others. Here we describe the statistical tools that

we use to model the latent scores that underlie different coders’ estimates. These tools

take into account the subjective aspect of the rating problem, the potential for raters to

inconsistently apply the same ordinal scales to cases (generally country-year observations),

and rater error. We also identify key potential problems with our current methods and

describe ongoing work to improve how we measure these items. Finally, we discuss the

different forms in which we present the output from our models.

1 Basic Notation

To more formally describe our data we introduce notation to describe the V–Dem dataset,

which contains ratings of a vast number of indicators that vary both geographically and

temporally. Moreover, more than one rater codes each indicator. As a result, there are

� i ∈ I indicator variables,

� r ∈ R raters,

� c ∈ C countries,

� and t ∈ T = {1, . . . , t} time periods.

1V–Dem documentation refers to “raters” as “Country Experts,” “Expert Coders” or “Coders.” Also
note that our description here largely pertains to contemporary V–Dem data (i.e. data from 1900 to
present). Many variables in the V–Dem data set—and measurement process—now include historical
data for many countries (i.e. years prior to 1900). These data are very different from traditional V–Dem
data, most importantly in that each country-variable generally has only one coder. Knutsen, Teorell et al.
(2019) and Section 2.6 discuss the separate issues involved involved in estimating latent values from these
data.
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Question: Is there freedom from political killings?
Clarification: Political killings are killings by the state or its agents without due process
of law for the purpose of eliminating political opponents. These killings are the result of
deliberate use of lethal force by the police, security forces, prison officials, or other agents of
the state (including paramilitary groups).
Responses:

0: Not respected by public authorities. Political killings are practiced systematically and
they are typically incited and approved by top leaders of government.

1: Weakly respected by public authorities. Political killings are practiced frequently and
top leaders of government are not actively working to prevent them.

2: Somewhat respected by public authorities. Political killings are practiced occasionally
but they are typically not incited and approved by top leaders of government.

3: Mostly respected by public authorities. Political killings are practiced in a few isolated
cases but they are not incited or approved by top leaders of government.

4: Fully respected by public authorities. Political killings are non-existent.

Figure 1: V–Dem Question 10.5, Freedom from Political Killings.

I is the set of indicator variables while i represents one element from that set, and so

forth. Each of the |R| raters provides ratings of one or more of each of the |I| indicators
in some subset of the available n = |C| × |T | country-years2 covered by the dataset. Each

country enters the dataset at time tc and exits at time tc + 1. We refer to rater r’s set of

observed ratings/judgments Jr. Each element of each of these judgment sets is an i, c, t

triple. Similarly, the set of raters that rated country-year c, t is Rct. Finally, we denote

a rater’s primary country of expertise cr. In this paper we focus on models for a single

indicator, and therefore drop the i indices from our notation. For a given indicator we

observe a sparse3 |C| × |T | × |R| array, y, of ordinal ratings.

2 Modeling Expert Ratings

The concepts that the V–Dem project asks raters to measure—such as access to justice,

electoral corruption, and freedom from goverment-sponsored violence—are inherently

unobservable, or latent. There is no obvious way to objectively quantify the extent to which

a given case “embodies” each of these concepts. Raters instead observe manifestations

2Some variables in the V–Dem dataset do not follow the country-year format. For example, elections
occur with different patterns of regularity cross-nationally. The V–Dem coding software also allows coders
to add additional dates within years, if something changed significantly at a particular date. However, for
the purpose of simplicity, we refer to the data as being country-year unless otherwise specified.

3The majority of raters provide ratings for only one country, as we discuss in more detail below.
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of these latent traits. Several brief examples illustrate this point. First, in assessing the

concept of equal access to justice based on gender, a rater might take into consideration

whether or not women and men have equal rates of success when suing for damages in a

divorce case. Second, to determine whether or not a country has free and fair elections, a

rater may consider whether or not election officials have been caught taking bribes. Third,

in assessing whether or not a government respects its citizens’ right to live, a rater might

take into account whether or not political opposition members have disappeared. As

different raters observe different manifestations of these latent traits, and assign different

weights to these manifestations, we ask experts to place the latent values for different cases

on a rough scale from low to high, with thresholds defined in plain language (again, Figure

1 provides an illustration). However, we assume that these judgements are realizations of

latent concepts that exist on a continuous scale. Furthermore, we allow for the possibility

that coders will make non-systematic mistakes, either because they overlook relevant

information, put credence in faulty observations, or otherwise mis-perceive the true latent

level of a variable in a given case. In particular, we assume that each rater first perceives

latent values with error, such that

ỹctr = zct + ectr (1)

where zct is the “true” latent value of the given concept in country c at time t, ỹctr is

rater r’s perception of zct, and ectr is the error in rater r’s perception for the country-year

observation. The cumulative distribution function for the rating errors is

ectr ∼ F (ectr/σr). (2)

Having made these assumptions about the underlying latent distribution of country-

year scores, it is necessary to determine how these latent scores map onto the the ordinal

scales which we present to raters.

2.1 Differential Item Functioning

The error term in Equation 1 allows us to model random errors. However, raters also

answer survey questions and assess regime characteristics in systematically different ways.

This problem is known as differential item functioning (DIF). In our context, individual

experts may idiosyncratically perceive latent regime characteristics, and therefore map

those perceptions onto the ordinal scales described in the V–Dem Codebook (Coppedge,

Gerring, Lindberg, Teorell, Altman, Bernhard, Fish, Glynn, Hicken, Knutsen, Marquardt,

McMann, Paxton, Pemstein, Reif, Skaaning, Staton, Tzelgov, Wang & Zimmerman 2016)

differently from one another. Consider again Figure 1, which depicts question 10.5 in

the V–Dem codebook. While it might seem easy to define what it means for political
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killings to be “non-existent,”4 descriptions of freedom from political killings like “mostly

respected” and “weakly respected” are open to interpretation: raters may be more or

less strict in their applications of these thresholds. Indeed, the fact that five different

coders rate a particular observation the same on this scale—e.g. they all give it a “3”

or “Mostly respected”—does not mean that they wholly agree on the extent to which

the relevant public authorities respect citizens’ freedom from political killing. These

differences in item functioning may manifest across countries, or between raters within the

same country; they may be the result of observable rater characteristics (e.g. nationality

or educational background), or unobservable individual differences. Many expert rating

projects with multiple raters per case report average rater responses as point estimates,

but this approach is inappropriate in the face of strong evidence of DIF.5 We therefore

require tools that will model, and adjust for, DIF when producing point estimates and

measures of confidence.

To address DIF, we allow for the possibility that raters apply different thresholds

when mapping their perceptions of latent traits—each ỹctr—into the ordinal ratings that

they provide to the project. Formally, for the cases that she judges (Jr), rater r places

a country-year in category k if τr,k−1 < ỹctr ≤ τr,k, where each τ represents a rater

threshold on the underlying latent scale. The vector τ r = (τr,1, . . . , τr,K−1) is the vector

of unobserved ranking cutoffs for rater r on the latent scale. We fix each τr,0 = −∞ and

τr,K = ∞, where K is the number of ordinal categories raters use to judge the indicator.

2.2 A Probability Model for Rater Behavior

When combined, the assumptions described by the preceding sections imply that our

model must take differences in 1) rater reliability and 2) rater thresholds into account in

order to yield reasonable estimates of the latent concepts in which we are interested. As a

result, we model the data as following this data generating process:6

4Even when raters know of no evidence that political killings occurred in a given country-year,
public authorities might not fully respect freedom from such violence: even descriptions that might seem
clear-cut at first glance are potentially open to interpretation. In such situations, two raters with identical
information about observable implications for a case might apply different standards when rating a
regime’s respect for personal right to life.

5Marquardt & Pemstein (2018) detail how the standard average-over-expert-coding approach can
yield inaccurate estimates of latent concepts, while Lindstädt, Proksch & Slapin (2020) illustrate how it
can result in misleading substantive results from analyses that use expert-coded data. See also Marquardt
(2020) for a discussion of the substantive implications of different expert-coded data aggregation techniques
under different forms of expert error.

6Other scholars have recommended different methods for aggregating expert coded data (in particular,
see Lindstädt, Proksch & Slapin 2020, Bakker, Jolly, Polk & Poole 2014). Marquardt & Pemstein (2021)
illustrate that the V–Dem measurement model tends to perform similarly or better than these approaches
under a variety of assumed data generating processes.
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Pr(yctr = k) = Pr(ỹctr > τr,k−1 ∧ ỹctr ≤ τr,k)

= Pr(ectr > τr,k−1 − zct ∧ ectr ≤ τr,k − zct)

= F

(
τr,k − zct

σr

)
− F

(
τr,k−1 − zct

σr

)
= F (γr,k − zctβr)− F (γr,k−1 − zctβr) .

(3)

The last two lines of Equation 3 reflect two common parameterizations of this model.

The first parameterization is typically called multi-rater ordinal probit (MROP) (Johnson

& Albert 1999, Pemstein, Meserve & Melton 2010),7 while the latter is an ordinal item

response theory (O-IRT) setup (Clinton & Lewis 2008, Treier & Jackman 2008). Note

that βr =
1
σr

and γr,k =
τr,k
σr

.8 The parameter σr is a measure of rater r’s reliability when

judging the indicator; specifically it represents the size of r’s typical errors. Raters with

small σr parameters are better, on average, at judging indicator i than are raters with

large σr parameters. In the IRT literature, βr is known as the discrimination parameter,

while each γ is a difficulty parameter. The discrimination parameter is a measure of

precision. For example, a rater characterized by an item discrimination parameter close

to zero will be largely unresponsive to true indicator values when making judgements, i.e.

her coding is essentially noise. In contrast, a rater with a discrimination parameter far

from zero will be very “discriminating:” her judgements closely map to the “true” value

of a concept in a given case. The γ and τ parameters are thresholds that control how

raters map their perceptions on the latent interval scale into ordinal classifications.9 As

discussed previously, we allow these parameters to vary by rater to account for DIF.

2.3 Temporal Dependence and Observation Granularity

V–Dem experts may enter codes at the country-day level, although many provide country-

year ratings in practice. Yet, as Melton, Meserve & Pemstein (2014) argue, it is often

unwise to assume that the codes that experts provide for regime characteristics are

independent across time, even after conditioning on the true value of the latent trait.

Note that temporal dependence in the latent traits—the fact that regime characteristics

at time t and t+ 1 are not independent—causes no appreciable problem for our modeling

approach. This fact may not seem obvious at first, but note that Equations 1–3 make

no assumptions about temporal (in)dependence across each zct. While we do make prior

assumptions about the distribution of each zct, the approach we describe in Section 2.5

7If we assume F (·) is standard normal.
8This equivalency breaks down if we allow for βr parameters less than one. Thus, the O-IRT model is

potentially more general than MROP.
9The term “difficulty parameter” stems from applications in educational testing where the latent

variable is ability and observed ratings are binary (in)correct answers to test questions.
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will tend to capture the temporal dependence in regime traits; our priors are also vague

and allow the data to speak for themselves. In fact, as Melton, Meserve & Pemstein (2014)

argue, “dynamic” IRT models (Martin & Quinn 2002, Schnakenberg & Fariss 2014, Linzer

& Staton 2015) are more restrictive than standard models with vague priors, because

their tight prior variances assume that latent traits at time t equal those at t− 1. While

these dynamic models can be helpful in shrinking posterior uncertainty by incorporating

often-accurate prior information about regimes’ tendency towards stasis, they can over-

smooth abrupt transitions (Melton, Meserve & Pemstein 2014). They are also inherently

optimistic about model uncertainty; we prefer a more pessimistic approach.10

Importantly, temporal dependence in rater errors violates the assumption described by

Equation 2.11 The mismatch between actual rating granularity and the standard practice

of treating expert codes as yearly—or even finer-grained—observations, is perhaps the

key driver of temporal dependence in rater errors, in our context. Crucially, when, in

practice, experts code stable periods, rather than years, their yearly errors will be perfectly

correlated within those periods. It is difficult to discern the temporal specificity of the

ratings that our experts provide, but it is self-evident that experts judge chunks of time

as whole units, rather than independently evaluating single years. Indeed, the V–Dem

coding interface even includes “click and drag” feature that allows raters to quickly and

easily apply a single code to an extended swath of time.12 Typically, expert ratings

10Analyses we conducted over the course of developing the model bore out our pessimism. We
attempted to model the complete time-series of the V–Dem data using two main strategies. The first
strategy involved assuming that all years following the initial coding year are a function of the previous
year (i.e. zc,t ∼ N(zc,t−1, 1)). The second strategy modeled country-year data as a function of a prior
radiating from the year in which the country had the best bridging, which itself had either a vague or
empirical prior. As expected, both of these methods and their subsets substantially smoothed country-year
estimates for countries with substantial, and abrupt, temporal variation. For example, in the case of
political killings in Germany, this smoothing meant that the years of the Holocaust obtained scores
substantially higher than is either accurate or what the raters intended: these years clearly belong to
the lowest category, and raters universally coded them as such. However, Germany’s high scores in the
post-war era pulled Holocaust-period estimates upwards, albeit with great uncertainty about the estimate.
We were able to ameliorate this problem somewhat by divorcing country-years with sharp shifts in codes
from the overall country time trends. For example, we assigned a vague prior to country-years with a
change in average raw scores greater than one, or allowed the prior variance to vary by the change in
the size of the shift in raw scores. However, both of these approaches are problematically arbitrary in
terms of assigning variance or cut-offs for a “large” shift; they also reduce bridging in the data. Finally,
our attempts to add temporal trends to the data also yielded unforeseen problems. Most noticeably, in
years with constant coding (i.e. no temporal variation in rater scores), scores would trend either upward
or downward in a manner inconsistent with both the rater-level data and our knowledge of the cases.
Attempts to remedy this issue by reducing prior variance for years with constant coding again faces the
issue of being arbitrary, and also only served to reduce the scale of the problem, not the trends themselves.
Additionally, temporal modeling of the data with radiating priors leads to “death spirals” in countries
with generally low scores and few coders: years in the lowest categories yielded strong and very low priors
for preceding years, which the data were not able to overcome. As a result, the priors essentially locked
these countries in the lowest category for years preceding events in the lowest category, even if rater-level
data indicated that these preceding years should not be in the lowest category.

11Note that dynamic IRT models do not address this issue; rather, they model stickiness in the latent
traits.

12Unfortunately, our web-based coding platform does not record when experts make use of this feature.
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reported at fine granularity may actually provide ratings spanning “regimes,” or periods

of institutional stasis, rather than years or days. As a result, treating these data as

yearly—or, worse, daily—would likely have pernicious side-effects; most notably it could

cause the model to produce estimates of uncertainty that are too liberal (too certain),

given actual observation granularity.

While we cannot completely address the potential for serially correlated rating errors,13

we have adopted a conservative approach to the problem of observation granularity.

Specifically, we treat any stretch of time, within a country c, in which no expert provides

two differing ratings as a single observation.14 As a result, each time period t represents

a “regime,” rather than a single year or day,15 and time units are irregular.16 This is a

conservative approach because it produces the smallest number of observations consistent

with the pattern of variation in the data. In turn, treating the data as observed at this

level of granularity yields the largest possible estimates of uncertainty, given patterns of

rater agreement. For example, for many measures, numerous northern European states

sport constant, and consistently high, codes across all raters in the post-war period. If we

were to treat these observations as yearly, we would infer that our raters are remarkably

reliable, based on repeated inter-coder agreement. These reliability estimates would, in

turn, yield tight tight credible intervals around point estimates. Using our approach, such

periods count as only a single observation, providing substantially less assurance that

our raters are reliable. This approach is probably too conservative—experts might be

providing nominally independent ratings of time chunks, such as decades—but we have

chosen to err on the side of caution with respect to estimates of uncertainty.

It is important to note that we are relying on the roughly five country experts, that

generally rate the whole time period for each country, to delineate “regimes.” As we

note in section 2.5, experts code periods that do not directly coincide with the periods

we code as regimes: some experts have declined to code additional years, while experts

recruited after 2013 only coded from 2005 onward. When such ratings fall within a

multi-year “regime” that expands beyond their first or final year of coding, our data

13Rating errors may exhibit inter-temporal dependence even across periods of regime stasis, an issue
that the literature on comparative regime trait measurement has yet to be adequately address, and an
issue we hope to remedy in future work.

14Previous iterations of the dataset (v10 and earlier) also allowed a change in self-reported rater
confidence to result in a new observation (self-reported confidence discussed in section 2.5). However,
this approach resulted in jumpy estimates with little clear substantive or theoretical benefit, especially
in periods with high expert turnover (pre-1900 and post-2015). We have therefore adopted a more
conservative approach to observation reduction.

15Regimes start and end on days, not years, although the V–Dem data are released at both daily and
yearly granularity.

16For cases in which one or more raters reported a change in a variable value over the course of a year
(i.e. they report more than one value for a single year), we interpolated the scores of the other coders to
that date (i.e. we assumed that they would have coded that date as being the same as the rest of the
year, as their coding suggests) and then estimated the latent value for that date within the framework of
the overall model. These estimates are available in the country-date dataset. The country-year dataset
represents the duration-weighted average of all scores in a given country-year.
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collapsing approach treats their rating as an evaluation of the whole span. In doing so,

we assume that these coders would not have changed their ratings across periods of stasis

identified by (other) country experts. Thus, while our data reduction approach is generally

a conservative decision, it does, in a sense, impute observations for experts with codings

orphaned within a regime. We argue that this assumption is reasonable because experts

should be qualified to identify periods of stasis within their countries of focus, but we

hope to avoid making this assumption when more data are available, as we describe in

Section 8.

2.4 Cross-National Comparability

Cross-national surveys such as V–Dem face a scale identification problem that is driven

by the fact that the γ and τ parameters may—and perhaps are even likely to—vary

across raters hailing from different cultural and educational backgrounds. While we have

many overlapping observations—typically the whole time-span of roughly 115 years—for

experts within countries, relatively few observations allow us to compare the behavior of

experts across countries. While the measurement model that we describe above therefore

has little trouble estimating relative thresholds (e.g. γ) for raters within countries, it

can have difficulty estimating the relative threshold placement of raters across countries.

For that reason, we have collected a substantial number of bridge coders, or a country

experts who rate a second country for an extended time period, which allows us to both

directly estimate differences between experts in scale perception and propagate these

relative perceptions across similar experts (see Section 2.5 for details). Nonetheless,

few experts have the ability to rate more than a few countries, and many justifiably

do not feel comfortable providing judgements for countries other than their own. As a

result, we currently lack the necessary overlapping observations to completely identify

the scale of the latent trait cross-nationally (Pemstein, Tzelgov & Wang 2015). Given

these insurmountable obstacles to producing dense bridging through case coding, we have

fielded anchoring vignettes (King & Wand 2007) in all V-Dem survey rounds since 2016.

We provide a brief overview of V-Dem’s vignetting process, in section 2.4.1, below, and

provide more details in Pemstein & Seim (2016) and Appendix III of Knutsen, Teorell

et al. (2019).

2.4.1 Vignettes

Anchoring vignettes are short descriptions of hypothetical cases that allow one to “anchor”

experts thresholds to a consistent scale, addressing DIF (King & Wand 2007). V-

Dem’s vignettes are unlabeled—they mention neither specific country names nor years—

descriptions of imaginary country-years that we attempted to design to provide as much

8



information about experts’ threshold parameters as possible.17 Because they require

no specific case knowledge to evaluate, vignettes serve as bridge cases that all V–Dem

experts can rate.18 Vignettes therefore furnish the model with a tremendous quantity

of overlapping ratings that it can use to estimate experts’ threshold parameters. We

designed vignettes to provide substantial scale variability, allowing us to learn about

experts’ threshold parameters across question scales, something that is critical in a context

where experts often use only subsets of their scales when rating real cases.

Following Bakker et al. (2014), we incorporate vignettes into the measurement model

almost like any other observation. Vignettes therefore act virtually identically to any other

country-year within the model; the primary difference is that they exhibit substantially

higher rater overlap than a real observation. One other difference is that we make use

of prior knowledge about vignettes when fitting the model. As Pemstein & Seim (2016)

describe in detail, we attempted to construct V-Dem’s vignettes to represent cases that

fall near idealized thresholds—based on the V-Dem survey’s descriptions of questions’

ordinal levels—across each variable’s latent scale. Therefore, rather than use the empirical

priors described by Equation 5 for vignette “cases”, we set prior means at even intervals

between −1.5 and 1.5 on the latent scale, based on the threshold that we designed each

vignette to straddle. We set the prior variances to one, as with all other observations.

V-Dem is iteratively improving its vignettes over time. The sheer scale of the project

made it impossible to write a large number of pilot vignettes for each question, nor

identify high-performing vignettes before presenting them to experts. Expert time is also

valuable, limiting the number of vignettes we can present to each expert during an update.

Therefore, we evaluate vignette performance after each update and write new vignettes for

questions where vignettes exhibit substantial ordering inconsistency across experts, and

therefore do a poor job of providing information about expert thresholds. For example,

we replaced around 20 per cent of the worst-performing vignettes during the 2018 update.

2.4.2 Lateral coding

In addition to bridge coders, V–Dem also gains cross-national comparability by utilizing

lateral coders, or country experts who rate multiple additional countries for a one-year

period, typically 2012. However, introducing these lateral codings into the V–Dem dataset

directly results in problematic estimates for some country years. In some cases, experts

who code laterally have substantially different perceptions of country-year scores than

those who code a longer time period. As a result, the scores for some lateral-coded country

17See Pemstein & Seim (2016) for a detailed description of how we constructed vignettes.
18Given coder attrition, we cannot ensure that all V-Dem raters provide vignette responses. Resource

constraints made it impossible to develop and deploy anchoring vignettes in tandem with the original
waves of the survey. Furthermore, while we encouraged coders to rate vignettes during our recent updates,
coders could, of course, opt out of this process. Nonetheless, expert response rates to vignettes have been
high, often approaching 80 per cent of returning coders.
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years are either higher or lower than they would be, had only experts who focus on this

country coded it. While these “jumps” are generally well-within uncertainty intervals,

they present a visual problem when discussing trends over time.

We therefore treat lateral codings as vignettes, allowing us to incorporate the infor-

mation on cross-national comparability that lateral codings provide without reporting

estimates with jumps.19 More specifically, we now duplicate the codings from all lateral-

coded country-years. We use the complete set of codings (lateral and non-lateral) for each

lateral-coded country year as a vignette, and use only non-lateral codings from experts

who coded multiple years for a country to directly estimate country-year scores.

Our current approach is potentially problematic for two reasons. First, we essen-

tially double-count the codings of non-lateral experts for laterally-coded country years.

Unfortunately, this double-counting is necessary to gather information about how these

experts’ scale perception compares to that of lateral coders, while still estimating scores

for lateral-coded years. Second, the lateral-coded estimate is, in principle, a more accurate

estimate of a country-year’s latent value than a non-lateral coded estimate: per Maestas,

Buttice & Stone (2014), incorporating codings from less-expert experts produces better

estimates than a strategy that only incorporates codings from only the most-expert experts.

In an ideal world, our strategy would therefore be to have lateral coders code the full time

series for all the countries they coded, ensuring a smooth time series. Unfortunately, such

a strategy is wholly infeasible given coder time constraints.

2.5 Prior Assumptions

Completing the model specification described in section 2.2 requires adopting prior

distributions for the model parameters. We focus on the O-IRT parameterization here,

discussing or prior assumptions for β, the γ, and z in turn.

2.5.1 Discrimination parameters

We assume βr ∼ N (1, 1), truncated so that it never has a value less than zero. The

assumption of truncation at zero equates to assuming that raters correctly observe the sign

of the latent trait and do not assign progressively higher ordinal ratings to progressively

lower latent values. In other words, we assume that all of our experts are well-informed

enough to know which direction is up, an assumption that is reasonable in our context.

19In datasets v7 and v8, we dealt with this problem by omitting lateral coders from the estimation of
empirical priors. Unsurprisingly, the large number of lateral coders meant that this approach generally
had minimal influence on country-year estimates.
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2.5.2 Thresholds

We adopt hierarchical priors for the rater threshold vector, γ. Specifically, we assume

γr,k ∼ N (γcr
k , 0.2),

γc
k ∼ N (γµ

k , 0.2) and,

γµ
k ∼ U(−6, 6),

(4)

subject to the threshold ordering constraint described in section 2.1. In other words,

each individual threshold γr,k is clustered around a country-level threshold γc
k—the average

k-threshold for experts from country c—and each country-level threshold is clustered

around a world-average k-threshold, γµ
k .

20 While it is traditional to set vague uniform

priors for the elements in γ, as we do with γµ, we adopt more informative priors for the

remaining γ parameters. More precisely, we assume that DIF is not especially large relative

to the standard normal scale, while allowing DIF across countries to be substantially

larger than DIF within countries. These assumptions help the model effectively leverage

the information provided by bridge and lateral coders. This assumption is especially

helpful for countries with few experts who participate in bridge or lateral coding because

it magnifies the information acquired through the few coders that do participate in this

exercise. It also assures that the model is weakly identified when a country is completely

unconnected from the rest of the rating network.21 This approach represents a compromise

between allowing DIF to exist at any magnitude, and the standard approach for expert

rating projects, which is to assume that DIF is zero.22

2.5.3 Latent values

We require a prior for the vector z. Typically, one a priori sets each zct ∼ N (0, 1).

This assumption arbitrarily sets the overall scale of the estimated latent traits to a

roughly standard normal distribution, which the literature generally refers to as a “vague”

or “weakly informative” prior. When one has sufficient data to fully identify relative

scale across observations, and to estimate rater thresholds with high precision, then

this assumption is sufficient to identify the model when combined with our priors for

β and γ. In standard IRT domains with a dense rating matrix, such as educational

20Earlier iterations of the project used a U(−2, 2) prior for γµ
k . We found that this prior is too

restrictive, and some variable thresholds approached the upper bound. We now also include checks of
upper- and lower-bound issues in our analyses of convergence.

21Such data isolation is rare in the dataset, occurring only for 1-3 countries, depending on the variable.
Future updates will include further lateral, bridge, and especially vignette coding to ameliorate and
eventually eliminate this concern.

22While somewhat arbitrary, the variance parameters were set at 0.2 after substantial experimentation,
and based on an extensive discussion about reasonable DIF magnitudes. We hope to relax this assumption
in future work, leveraging new data, particularly anchoring vignettes (Pemstein & Seim 2016), to better
estimate DIF.
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testing, scale identification is rarely a problem. However, because we lack substantial

cross-national rating data, the problem is potentially severe in our context (Pemstein,

Tzelgov & Wang 2015). While there is no statistical test to certify that one has obtained

scale identification, a lack of such identification can be easy to diagnose. In the case of our

data, analyses we conducted using the traditional mean-zero prior indicate that, in cases

where we lack sufficient bridge or lateral coding to anchor a country to the the overall

scale, the case’s average will shrink toward zero. This phenomenon is readily apparent in

face-validity checks, especially with regard to countries that have little internal variation

and modest coding overlap with the rest of the dataset. For example, numerous northern

European countries exhibit little or no variation in ratings for many indicators—they

obtain perfect scores from the raters—in the post-war period, yet the ratings for these

countries sometimes shrink toward the middle of the distribution. However, we know a

priori with reasonable confidence that such shrinkage should not occur. While placing

hierarchical priors on the γ vector, as we describe above, mitigates this problem, it does

not eliminate it.

To address this issue without losing many of the advantages of the IRT framework,

we adopt informative empirical priors for the vector, z, of latent traits. Specifically, we

model country-year latent values as

zct ∼ N (¯̄yct, 1) (5)

where

¯̄yct =
ŷct − ¯̂y

s
,

ŷct =

∑
r∈Rct

wctryctr∑
r∈Rct

wctr

,

¯̂y =

∑
{c,t}∈CT ŷct

|C × T |
,

(6)

In these equations, s represents the standard deviation of ŷct across all cases, and wctr a

confidence self-assessment—on a scale from zero to 100—that coder r provides for her

rating of observation ct.23 Note first that we retain a constant prior variance across

cases and that prior variance is on par with the variation in the prior means, which are

normalized to have variance one. Thus, the prior remains vague and allows the data to

speak where possible; we do not translate high rater agreement into prior confidence.

23In plain English, ŷct is the average ordinal rating for case ct, across the raters of the case, weighted
by self-assessed coder confidence; ¯̂y is the average ŷct, across all cases. Therefore, ¯̄yct is the normalized
weighted average rating for case ct. Note that rater confidence may vary across a single observation since
we are no longer using changes in self-reported confidence to reduce the data. In these cases, we use a
rater’s day-weighted average confidence for the purpose of estimating the empirical prior.
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The empirically-informed prior means (¯̄yct) allow the model to place cases relative

to another in a reasonable way when the model lacks the necessary information (i.e. it

lacks sufficient bridge and lateral coding) to situate a case relative to the rest of the

cases. One way to think about this prior is that we are assuming the distribution of

values that a traditional expert survey would provide based on average coder ratings.

We then allow the model to adjust these estimates where it has the information to do

so. Another interpretation is that we start from a prior assumption of zero DIF, and

allow the model to relax that assumption where the data clearly indicates violations. Of

course, this approach will not identify or adjust for DIF where bridging information is

sparse. This lack of DIF identification in certain cases is a weakness of the current analysis.

Nonetheless, our approach represents a practical approach in light of data limitations and

provides numerous advantages over simply reporting means and standard deviations.

Figure 2 graphically illustrates the advantage of our approach, presenting different

methods of modeling data from the Netherlands over the V–Dem coding period. Specif-

ically, subfigure a) illustrates the raw mean and standard deviation of the coder data

across time, with horizontal lines representing the different ordinal categories. Subfigure

b) presents the output from a model with the traditional N(0, 1) prior, and subfigure

c) a model with the N(¯̄yct, 1) empirical prior; in these graphics, the horizontal lines

represent the overall thresholds (γµ). All models show essentially the same trends over

time: relatively high scores both preceding and following the Nazi occupation, with

relatively low scores during the Nazi occupation. However, inter-coder variance makes

the mean and 95 percent confidence interval (CI) approach overly noisy: CIs from all

periods substantially overlap. Moreover, the high variation during the period 1960-2012 is

problematic from a substantive standpoint: while there may be debate about whether or

not political killings were isolated or non-existent, most scholars would agree that political

killings were definitely in one of these two categories during this time.

Both models that incorporate our latent variable modeling strategy yield more reason-

able estimates of confidence, with estimates from during the Nazi occupation falling clearly

below those for other periods. However, there are substantively important differences

between the model with a vague prior and that with an empirical prior. Specifically, for

regimes outside of the period of Nazi occupation, the model with a vague prior consistently

pulls the estimates toward the center of the distribution, contrary to the general rater

scores. Perhaps most disconcertingly, the estimate for the period 2013-2014 drops relative

to the pre-2013 period, when in fact it was the only period in which all raters agreed

that the Netherlands was free from political killings. In contrast, the model with the

empirical prior consistently ranks these regimes as having high values, with the period of

2013-2014 having the highest estimates of freedom from political killing of any regime,

though uncertainty increases because of coder attrition.

In addition to ensuring scale identification, we also use the empirical priors to correct for
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Figure 2: Longitudinal trends in freedom from political killings in the Netherlands,
1900-2014
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systematic differences in scale perception between different groups of experts. Specifically,

2012 was the last year rated by experts in the initial wave of coders, some of whom

declined to code updates and were replaced. While new coders code a minimum of five

years for their country (i.e. the four years prior to their year of recruitment and the year of

recruitment), facilitating bridging between new and returning coders, the bridging may not

be sufficient to establish full comparability between codings. Specifically, new coders may

have different scale thresholds than those who coded the entire time series, either by dint

of idiosyncratic characteristics or because their point of reference systematically diverges

(i.e. they consider scores relative to the past five years, not 1900-present). In either

event, the fact that they only coded five years in the past means that there is generally

limited information to establish their thresholds. This combination of insufficient data

and potentially different thresholds means that scores could change for reasons related to

coder attrition/replacement, not actual changes in the latent construct.

We therefore offset the contribution of new coders (coders who only code years after

2005) to the empirical prior by the average difference between these coders and those

coders who coded the years 1900-2012 in overlap years (i.e. those years both these sets of

coders and the full time period coders coded). The rationale for this practice is that the

offsets deal with potentially systematically different reference points for new and returning

coders by fixing the prior for a given country-year to a consistent reference point, i.e. the
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experts who coded the full time period.24

A more elegant solution to systematic differences in scale perception due to temporal

references is to have new experts anchor their perceptions to the full time series, without

actually asking them to code it. In surveys starting in v10 we have attempted to do so

by asking new coders code an additional sequence of years: 1900, 1925, 1950, 1975 and

2000. Preliminary analyses indicate that this approach was relatively successful: new v10

and v11 coders tend to provide scores in overlap years that are closer to those of full-time

period coders than other waves of new coders. If more detailed analyses confirm this

pattern, the need for offset priors may be ameliorated in future dataset iterations.25

2.6 Historical V–Dem

V–Dem now includes data covering the period 1789 to present for 91 countries (Knutsen,

Teorell et al. 2019). These countries include both states that exist in the contemporary

period, as well as states that later merged to form a larger successor state (e.g. Prussia

and Saxony in Germany). Data from Historical V–Dem differs substantially from that of

contemporary V–Dem (years 1900 to present) in that they generally rely on one coder

for the entire pre-1900 period.26 As such, these data generally have a great deal more

uncertainty about their latent trait estimates than do contemporary data, which have

multiple coders.

We have taken multiple steps to facilitate the cross-national comparability of historical

data in the presence of extreme sparsity. First, we treat historical coders as having the

contemporary successor state as their main country-coded for the purposes of hierarchically

clustering coders’ threshold parameters. This step facilitates the cross-national compara-

bility of historical data by borrowing information about historical coders’ thresholds from

their contemporary counterparts. Second, all historical variables have vignettes which

historical coders were required to complete, providing further information about historical

coders’ thresholds. Third, approximately 33 percent of historical coders conducted lateral

coding of three additional countries (generally the first post-1900 election year for the

lateral-coded countries), which we treat as vignettes akin to those for contemporary

V–Dem.

We have also endeavored to integrate the historical time series as seamlessly as possible

into the contemporary time series. In addition to vignettes and lateral coding, historical

raters also coded the period 1900-1920,27 providing us with data to compare their scores to

24See Appendix A for the algorithm we use to compute empirical priors.
25At present, we do not use the pre-2005 codings from new v10 and v11 experts because we want to

avoid jumps in the data. Future iterations will hopefully incorporate these data to facilitate estimation of
reliability and threshold parameters of new coders.

26Some cases have two coders, either due to their substantive importance or concerns about data
validity from the initial coding.

27In the case of those countries for which we have no data on the early twentieth century, historical
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those of experts who coded the period 1900-present. Analyses of this overlap period provide

strong evidence that many historical coders use different cognitive reference points for the

levels of the ordinal scale than do contemporary coders, a not entirely unexpected result

given the drastically different context of the cases. Most prominently, many historical

experts tended to provide higher scores on the scale than their contemporary counterparts,

likely due to the fact that most countries had lower latent trait values prior to 1900

than they do in the contemporary period. That is, historical coders tend to be more

optimistic about country scores than their contemporary counterparts, in the sense that

their standards are shifted downwards.

Ideally, the combination of coder-specific threshold parameters and vignettes would

allow us to simply estimate historical latent trait values in the same manner as we do for

contemporary data. Unfortunately, the sparsity of the data necessitates a more proactive

approach to account for this form of DIF. Specifically, we offset the contribution of

historical coders to the empirical prior by the average difference between these coders

and those contemporary coders in the overlap years (i.e. 1900-1920), using the same

method as we do with new coders for contemporary V–Dem. Even more specifically, we

determine the confidence-weighted average score of contemporary coders for a specific

country in the overlap years, and subtract the equivalent average for historical coders of

the same country from this value. We then add this difference to the historical coders’

scores for their country when computing the prior, truncating the resulting value such

that it cannot exceed the ordinal scale values. In essence, this approach means that the

empirical prior for historical data represents our best guess of how a historical coder

would have scored their case, had they been a contemporary coder. The measurement

model then adjudicates between the prior and the actual score provided by the historical

coder, incorporating information from the vignettes and hierarchical threshold clustering

to determine latent trait values for historical data.

This approach yields data for historical periods that have greater face validity than

they would otherwise have. However, given the sparsity of the data, issues remain. Perhaps

most prominently, there are often slight jumps in the data when the contemporary codings

end (given data reduction, scores from contemporary coders can continue for multiple

years into the past), though measures of uncertainty generally overlap when these changes

are not attributable to actual changes in the latent values.

Given these concerns, we encourage users of the historical data to incorporate measures

of uncertainty into their analysis whenever possible, and to be cautious about interpreting

movements in latent scores around the transition between the historical and contemprorary

V-Dem coding periods. One should also be aware that our efforts may not always fully

experts coded approximately twenty years in the contemporary period for which we have data. For
example, the historical coder for Libya also provided scores for the period 1952-1972 in Libya, 1952 being
the beginning year for the contemporary Libyan time series.
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adjust for systematic differences in how historical and contemporary coders map ordinal

categories onto the latent scale.

2.7 Model Overview

At its heart, the V–Dem measurement model does three things. First, it takes ordinal

observations and maps raters’ thresholds onto a single interval-valued latent variable.28 In

other words, it provides a reasoned way to deal with a relatively large class of differences

in how individual respondents interpret Likert scales. Second, it allows raters to vary in

how reliably they make judgements, but largely assumes away the potential for systematic

rater biases that are not covered by varying thresholds.29 This latter point is clearest

in the MROP version of the model. Specifically, in a standard MROP, one assumes

F (·) is standard normal, such that ectr = N (0, σ2
r). In other words, raters get things

right on average, but they make stochastic mistakes where the typical magnitude of

mistakes that rater r makes on indicator i is σ2
r . So, if σ2

r < σ2
r′ then rater r provides

more reliable judgements about z than r′ because she makes smaller mistakes on average.

Finally, taking differences in rater thresholds and precisions into account, the model

produces interval-valued estimates of latent traits—each zct—accompanied by estimates

of measurement error that reflect both the level disagreement between coders on the case

in question, and the estimated precision of the coders who rated the case. Specifically,

the conditional posterior distribution of each latent trait is

zct ∼ N
(
act
bct

,
1

bct

)
(7)

where

act = ¯̄yct +
∑
r∈Rct

βrỹctr and bct = 1 +
∑
r∈Rct

βr. (8)

Interpreting Equation 7 and 8, we see that the conditional posterior mean of each zct is the

average of the (latent) rater perceptions, weighted by raters’ discrimination parameters.30

The conditional posterior variance is also a function of the rater discrimination parameters;

posterior variance decreases as raters become more discriminating.

28V–Dem data also include dichotomous variables, which we estimated in a similar fashion with
modifications to reflect the fact that, instead of multiple thresholds, dichotomous variables have a unique
intercept. Specifically, we hierarchically estimated a rater-specific intercept for each variable as opposed
to rater-specific thresholds.

29The exception to this rule is the offset priors, which account for the possibility that new and historical
raters may apply a different thresholds to their cases. We are considering ways to expand the model to
more elegantly handle such issues, as well as the fact that a rater may assign one set of thresholds to one
country and a different set to another (on related issues, see Fariss 2014).

30The thresholds enter the equation through the conditional distributions of the latent perceptions,
each ỹctr. See Johnson & Albert (1999), especially Chapters 5 and 6, for a full discussion of how these
models work.
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3 Estimation and Computation

We estimate the model using Markov chain Monte Carlo methods, specifically the

No U-Turns Sampler (Hoffman & Gelman 2014) implemented in the Stan probabilistic

programming language (Stan Development Team 2015). Figure 3 provides our imple-

mentation of the IRT model in Stan. We simulate four Markov chains for each variable

in the V–Dem dataset for a sufficient number of iterations, using Gelman & Rubin’s

(1992) diagnostic to assess convergence. This process follows a standardized procedure

in which we first run each variable for 10,000 iterations, with a 1,000 draw burn-in. We

then thin the draws from the algorithm such that we saved every twentieth draw. As

a result, we achieve a 450-draw posterior distribution for each of the four chains (1,800

draws total). If more than five percent of the latent scores fail Gelman & Rubin’s (1992)

test for convergence (as defined by r̂ ≥ 1.01), we rerun the model with a greater number

of iterations, beginning with 20,000 iterations and continuing with 40,000 iterations in

rare cases.31 We increase the burn-in to cover to the first 10 percent of draws from each

model (e.g. 1,000 iterations for a simulation with 10,000 iterations total), and also set the

thinning interval so that we would have 450 draws from each of the four chains, regardless

of the number of iterations. These models require anywhere from a couple of hours to

multiple days to run. Moreover, we fit these models to over 200 variables, necessitating

the use of cluster computing environments.

4 Products

We provide three sets of point estimates and measures of uncertainty to allow scholars and

policymakers to choose a version which best fits their objectives. The first set consists of

data taken directly from the measurement model (interval-level trait estimates), while the

other two sets are transformations of this output: they present the output on an ordinal

scale and linearized ordinal scale. Finally, we also provide estimates of the difficulty and

discrimination parameters to enable scholars to develop a better sense of the V–Dem data.

4.1 Interval-Level Latent Trait Estimates

The primary quantities of the interest generated by our measurement framework are

interval-level estimates of the latent score vectors, z, for each indicator. Our estimation

procedure simulates 1,800 draws from the posterior distributions of these scores. We use

the medians of these sets of posterior distribution draws as point estimates of the latent

traits and can use the distributions to calculate credible intervals, highest posterior density

(HPD) regions, and other measures of measurement uncertainty. These estimates are

31Given the sheer number of parameters in these models, we expect some tests to fail by chance, hence
the five percent threshold.
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data {
int<lower=2> K; // # response c a t e g o r i e s
int<lower=1> J ; // # ra t e r s
int<lower=1> C; // # s t a t e s
int<lower=1> N; // # s ta t e=years
int<lower=1> n obs ; // # obse r va t i ons
int<lower=1, upper=C> r a t e r s t a t e [ J ] ; // o ld cdata ( each ra t e r ’ s s t a t e )
int<lower=1, upper=K> y [ n obs ] ; // ra t i n g s
int<lower=1, upper=J> j i d [ n obs ] ; // ra t e r i d s
int<lower=1, upper=N> s y i d [ n obs ] ; // s ta t e=year i d s
r ea l<lower=0> gsigmasq ; // ra t e r cu tpo in t sd around s t a t e cu tpo in t s
r ea l<lower=0> gsigmasqc ; // s t a t e cu tpo in t sd around world cu tpo in t s
vec to r [N] mc ; // pr io r means

}
parameters {

vec to r [N] Z s ta r ; // s ta t e=year po s i t i o n s
vector<lower==1.0>[J ] beta raw ; // ra t e r r e l i a b i l i t y s h i f t e d by =1
vector<lower==6.0 , upper=6.0>[K=1] gamma mu ; // world cu tpo in t s
vec to r [K=1] gamma c [C ] ; // s t a t e cu t po in t s
ordered [K=1] gamma[ J ] ; // ra t e r cu tpo in t s

}
transformed parameters {

vec to r [N] Z = mc + Z sta r ;
vec to r [ J ] beta = beta raw + 1 . 0 ;

}
model {

vec to r [ n obs ] lp = Z [ s y i d ] .* beta [ j i d ] ; // l i n e a r p r ed i c t o r
vec to r [ n obs ] p ;
vec to r [K+1] tau [ J ] ;

for ( j in 1 : J ) { // top and bottom thre sho l d s , p r a c t i c a l l y =In f/+In f
tau [ j , 1 ] = =1000000.0;
tau [ j ,K+1] = 1000000 .0 ;

}
tau [ , 2 :K] = gamma [ , ] ;

for ( obs in 1 : n obs ) {
p [ obs ] = Phi approx ( tau [ j i d [ obs ] , y [ obs ]+1] = lp [ obs ])=

Phi approx ( tau [ j i d [ obs ] , y [ obs ] ] = lp [ obs ] ) ;
}

t a r g e t += sum( log (p ) ) ; // v e c t o r i z e d incrementat ion o f the l o g l i k e l i h o o d

Z s ta r ˜ std normal ( ) ;

for ( j in 1 : J )
beta raw [ j ] ˜ std normal ( ) ;

for ( c in 1 :C)
gamma c [ c ] ˜ normal (gamma mu, gsigmasqc ) ;

for ( j in 1 : J )
gamma[ j ] ˜ normal (gamma c [ r a t e r s t a t e [ j ] ] , gsigmasq ) ;

}

Figure 3: Stan Code
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described as “Relative Scale” — Measurement Model Output in the V–Dem codebook, and

the release dataset provides point estimates (the posterior median), the posterior standard

deviation, as well as upper and lower bounds of the 68 percent HPD intervals. Full posterior

samples are available in the V–Dem archive on the CurateND (http://curate.nd.edu)

website.

4.2 Difficulty and Discrimination Parameters

The MCMC algorithm also produces simulations from the posterior distributions of

rater difficulty—including the hierarchical components described in Equation 4—and

discrimination parameters. The difficulty parameters are useful for mapping latent trait

estimates back onto the codebook scale, either at the rater, country, or dataset level.

Analysts can rely on these threshold estimates to interpret how the typical coder would

describe ranges on the latent scale, providing an important aid to qualitative interpretation

of the model’s estimates. Plotting point estimates of these thresholds as horizontal lines on

latent trait plots, for instance, helps to ground the latent scale to real-world descriptions

of regime characteristics.

The discrimination parameters (βr) describe the inverse reliability of the raters. While

their primary role is to allow the model to weight estimates and calculate measures of

confidence, as we describe in Section 2.7, they can also be a useful diagnostic tool. In

particular, analysts can use these estimates to examine where the V–Dem raters are most

and least reliable, and to model potential sources of modeling error (see, for example,

Marquardt, Pemstein, Seim & Wang (2019)).

We do not bundle difficulty and discrimination parameter estimates with the core

V–Dem dataset because they are measured at the coder level, but full posterior samples

of both the difficulty and discrimination parameters are available in the V–Dem archive

on the CurateND website.

4.3 Ordinal-Scale Estimates

We can use the difficulty parameters to generate latent trait estimates on the original

ordinal scale described for each indicator in the V–Dem codebook. Specifically, for each

indicator, we generate samples from the posterior distributions of the classifications

a typical rater would give to each case on the original codebook scale. Consider a

single country-year case, ct. For each sample, s, drawn from the simulated posterior

distribution, we assign the ordinal score of zero to the draw if z
(s)
ct ≤ γµ(s)

1 , a score of

one if γµ(s)
1 < z

(s)
ct ≤ γµ(s)

2 , and so on. The estimates are part of the V–Dem dataset; the

codebook refers to them as “Ordinal Scale” — Measurement Model Estimates of Original

Scale Value. The core V–Dem dataset includes both a point estimate (the integerized
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median score across posterior draws) and integerized ordinal 68 percent HPD intervals.

Users can find full posterior samples in the V–Dem archive on the CurateND website.

4.4 Linearized Ordinal-Scale Posterior Predictions

While the ordinal-scale estimates that we describe above are useful for situating our

measurement model output within a qualitative frame, they can be somewhat awkward

to visualize, especially with associated HPD regions, because they are purely ordinal.

Therefore, to provide users with a convenient heuristic tool for interpreting model output

on the original codebook scale, we linearly translate the latent trait estimates to the

ordinal codebook scale as an interval-level measure. First, for each posterior draw, we

calculate the posterior predicted probability that a typical coder would assign each possible

ordinal score to a given case. As an example, consider an indicator with ordinal levels

ranging from zero to three. Then,

p
(s)
ct,0 = ϕ(γµ(s)

1 − zct
(s))

p
(s)
ct,1 = ϕ(γµ(s)

2 − zct
(s))− ϕ(γµ(s)

1 − zct
(s))

p
(s)
ct,2 = ϕ(γµ(s)

3 − zct
(s))− ϕ(γµ(s)

2 − zct
(s))

p
(s)
ct,3 = 1− ϕ(γµ(s)

3 − zct
(s)).

(9)

Next, we linearly map these predicted probabilities onto the indicator’s codebook scale:

o
(s)
ct = 0× p

(s)
ct,0 + 1× p

(s)
ct,1 + 2× p

(s)
ct,2 + 3× p

(s)
ct,3. (10)

The V–Dem dataset provides median estimates, posterior standard deviations and

68 percent HPD bounds for each oct for each indicator; the codebook refers to them

as “Original Scale” — Linearized Original Scale Posterior Prediction estimates. It is

important to note that there are two potential issues in interpreting this output. First,

this transformation can distort the distance between point estimates: the distance between

1.0 and 1.5 on this scale is not necessarily the same as the distance between a 1.5 and

2.0. Second, the estimates are not uniquely identified: different combinations of weighted

posterior predictions could yield the same linearized posterior prediction score.

5 Graphical illustration of the V–Dem data

To illustrate both the utility of our latent variable estimation strategy and the different

ways in which we present the output from the measurement model, we present visualizations

of V–Dem data, focusing on freedom from political killings for three countries. Figure 4

shows data from the United States, a country with which most readers will be familiar;

Figure 5 depicts Germany, a case with a generally large number of raters and great
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Figure 4: Longitudinal trends in freedom from political killings in the United States,
1900-2012
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(c) Linearized original scale
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(d) Ordinal scale

variation in freedom from political killings; and Cambodia (Figure 6) is a substantively

important case with fewer raters.

For each country, we present a) the raw mean and standard deviation of rater codings

(for countries in which raters were in perfect agreement, the standard deviation is set at

zero), b) the interval-level median estimate and 95 percent HPD interval, c) the linearized

original scale median estimate and its 95 percent HPD interval, and d) the integerized

median ordinal scale estimate and its 95 percent HPD interval. For ease of interpretation,

each graphic also contains horizontal lines denoting quantities of substantive importance.

In the case of the raw mean, original scale and ordinal scale graphics, these lines represent

the scale items with which raters were presented. More specifically, an estimate close to

zero indicates that raters believe the country-year to have systematic political killings,

a one a country-year in which political killings are frequent, a two a country-year with

occasional political killings, a three a country that is largely free from political killings,

and a four a country that is free from political killing. In the case of the interval-scale

estimates, the line represents the world-average thresholds for the scale items (γµ): a

score above the highest horizontal line indicates that a country-year’s estimate falls in the

typical rater’s fourth category (free from political killings); a score below the lowest line

indicates a country-year in which the average rater perceived that political killings were

systematic.

For example, Figure 4 presents four graphics representing temporal trends in freedom

from political killings in the United States between 1900 and 2012. Subfigure a) illustrates
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Figure 5: Longitudinal trends in freedom from political killings in Germany, 1900-2014
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(b) Measurement model output
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(c) Linearized original scale
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(d) Ordinal scale

the raw mean and standard deviation of rater scores. This subfigure clearly shows that

coders generally believe the United States to be between the third and the fourth category,

i.e. having either isolated or no political killings, though there is disagreement about this

ranking, especially in the first half of the 20th century. Subfigure b) presents the output

of the measurement model, which coincides with the raw mean and standard deviation

in that estimates are generally between the third and fourth categories. However, the

measurement model output diverges from the raw estimates by systematically discounting

unreliable coders and incorporating different coder thresholds. As a result, the model

generally estimates the United States to be between the third and fourth thresholds until

the 21st century, at which point is is estimated to be almost certainly in the highest

category. The linearized original scale (subfigure c)) unsurprisingly yields estimates that

are in line with the measurement model, though in a perhaps more easily interpretable

fashion: estimates are clearly generally between the third and fourth categories. Finally,

the ordinal scale output provides the most succinct analysis of the data, showing that our

best guess for the United States’ rating is generally either the third or fourth category;

only in the 21st century are we almost fully confident that it was free from political

killings.

Figure 5 provides similar illustrations, but regarding freedom from political killings

in Germany. As with the data from the United States, the data from the beginning of

the 20th century is very noisy for the raw mean estimates, making interpretation difficult.

However, during certain regimes (i.e. the Holocaust the late 20th century, and early
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Figure 6: Longitudinal trends in freedom from political killings in Cambodia, 1900-2012
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(d) Ordinal scale

21st century) raters are in perfect agreement regarding Germany’s scores. Data from

the measurement model reflect those periods of perfect agreement by indicating that

during the Holocaust Germany was well below the lowest threshold and has been above

the highest threshold for the last several decades. The model also significantly tightens

confidence toward the beginning of the 20th century, indicating that some of the variance

may have been due to unreliable coders or different thresholds. The linearized original

scale and ordinal scale output reflect these trends.

Data from Cambodia, illustrated in Figure 6, evinces greater variation at the rater level

than that from either Germany or the United States, save for the period of the Cambodian

Genocide during which raters were in universal agreement that Cambodia belonged in the

lowest category. All output reflects this variation: whereas scores for Germany and the

United States generally vary fall between two categories, in Cambodia they often include

three. However, through coder-specific thresholds and reliability measures, the model

does reduce the variance significantly, and captures the observations for which the coders

are in full agreement.

6 Interpretation of uncertainty in V–Dem data

HPD intervals are a Bayesian analog of frequentist confidence intervals. They differ from

frequentist confidence intervals in that they are estimated over the posterior distribution

of the data, representing the smallest interval that captures the specified percentage of
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the distribution. Substantively, they represent the region in which we believe the true

latent value to lie, with a specified level of confidence. For example, we are 95% confident

that a true value is within a 95% HPD interval.

In interpreting uncertainty estimates, it is important to remember that there are two

main sources of uncertainty. First, cases with fewer coders are likely to have a higher level

of uncertainty, since there is less data to facilitate estimation. This source of uncertainty

is particularly visible in Historical V–Dem data (i.e. data from years prior to 1900), which

relies on one-two coders.

Second, cases with greater expert disagreement result in greater uncertainty. Though

our model takes DIF and variation in expert reliability into account, even in the absence

of these factors experts would almost certainly disagree about hard-to-measure cases

due to differences in opinion or access to different sources of information. Accordingly,

uncertainty is an essential element of the V–Dem data, and users should be attentive to it

as they conduct their analyses.

For example, when assessing change in a latent trait over time in a country, it is

important to not just note change in the point estimate, but also the degree of uncertainty

associated with this change. While observing whether or not HPD intervals overlap is a

reasonable rule-of-thumb (i.e. if two observations have non-overlapping 68 percent HPD

intervals, it is reasonable to be confident that a change occurred), best practice uses the

posterior distribution of the latent trait values to assess the probability of a change, as

well as its magnitude.

To that end, we provide large samples simulated from the posterior distributions of all

the parameters in our model on CurateND. We have also developed a tutorial on best

practices for incorporating the estimates of measurement uncertainty that we provide

when conducting substantive analyses using the V–Dem data (Bizzarro, Pemstein &

Coppedge 2016); while Marquardt (2021) provides an applied example for doing so, along

with replication code. In the longer term, we are developing software that will facilitate

this process in commonly used statistical packages like R and Stata.

7 Aggregating MM output into indices

Given the importance of the posterior uncertainty in the measurement model output, we

have also developed methods to propagate it in many of the V–Dem indices that aggregate

these data into broader theoretical constructs. For example, the Core Civil Society Index

is comprised of three expert-coded variables, the Civil Society Participation Index four

(Bernhard, Jung, Tzelgov, Coppedge & Lindberg 2017).

To create these indices we use a relatively standard Bayesian Factor Analysis (BFA)

model (Jackman 2009), which we run in rjags (Plummer 2012).32 However, to propagate

32Note that not all V–Dem indices are created using BFAs, and users should refer to the relevant
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model {
###Factor an a l y s i s f un c t i o na l form

for ( i in 1 : n) {
for ( j in 1 : p ) {

mu[ i , j ] <= gamma[ j , 1 ] + gamma[ j , 2 ] * x i [ i ]
y [ i , j ] ˜ dnorm(mu[ i , j ] , tau [ j ] )

}
}

###Latent va lue s
for ( i in 1 : n) {

x i [ i ] ˜ dnorm (0 , 1 )
}

##Pr io r s
for ( j in 1 : p ) {

gamma[ j , 1 ] ˜ dnorm(0 , 0 . 01 ) ##In t e r c ep t
gamma[ j , 2 ] ˜ dnorm(0 , 0 . 01 ) T(0 , ) ##Slope , r e s t r i c t e d to p o s i t i v e va lue s
omega [ j ] ˜ dun i f (0 ,100) ### Measurement standard e r r o r
tau [ j ] <= pow(omega [ j ,=2) ###Convert to p r e c i s i o n

}
}

Figure 7: Bayesian Factor Analysis Code

uncertainty from the measurement model estimates, we utilize a slightly ornate estimation

approach. First, we sample 600 draws from the posterior distribution of each expert-coded

variable included in the BFA estimation process. Second, we run a BFA on each of these

600 draws. Each BFA runs for 12,000 iterations with a thinning interval of 2,000, yielding

six posterior draws per BFA. An important nuance in our approach is that, prior to

running the BFAs, we divide the 600 initial draws into eight sets of 75 posterior draws.

Each of the eight sets has the same starting value for their respective 75 BFAs, allowing

us to combine the draws from each set into pseudochains for the purpose of assessing

convergence, each with 6× 75 = 450 posterior draws. As with the measurement model

output, we assess convergence using the Gelman-Rubin diagnostic. However, in the case of

the BFA pseudochains we use a slightly less restrictive criterion for convergence: r̂ < 1.1,

as opposed to r̂ < 1.01.

Note that this aggregation strategy incorporates both uncertainty from the inputs (i.e.

by using 600 draws from the posterior distribution of each expert-coded variable) and the

factor analysis process itself (i.e. by including six posterior draws from each BFA).

8 Discussion and Future Plans

This paper describes the latent variable model that we use to generate point estimates and

measures of confidence for those ordinal V–Dem measures that multiple experts subjectively

V–Dem Codebook entries for information on how specific indices were created. Perhaps most prominently,
we use the average over a number of posterior draws to create indices which comprise of only two
expert-coded variables. Other exceptions include the accountability indices, for the estimation of which
Lührmann, Marquardt & Mechkova (2020) use Bayesian structural models. Also note that higher-level
indices—which incorporate BFA output—are estimated using an entirely different methodology, albeit one
that also propagates posterior uncertainty (Coppedge, Gerring, Lindberg, Skaaning, Teorell et al. 2017).
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coded. This model provides a number of advantages over the standard practice—common

among expert surveys within political science—of releasing rating means and standard

deviations as point and confidence estimates, respectively. It builds upon a specific

probability model, long used in the psychometric literature, to estimate rater reliability

and to model a large class of DIF issues, allowing the model to adjust for variations in how

raters conceptualize and apply ordinal scales to observations. The traditional approach

to analyzing expert-coded data with means and standard deviations may provide quite

misleading point estimates, and measures of uncertainty, when reliability varies across

experts and when items function differentially. Our approach adjusts estimates to account

for both of these issues. Of course, our data present specific challenges that complicate

our measurement efforts and we see the modelling framework described here as only a

first step in an iterative measurement process.

Most notably, we lack sufficient data to fully model DIF cross-nationally, weakening the

cross-national comparability of the V–Dem measures. While our method should produce

measures that are at least as cross-nationally comparable as the mean/standard deviation

approach, and often dramatically outperform the standard procedure (Marquardt &

Pemstein 2018), our reliance on informative prior assumptions to handle DIF in situations

where data are sparse means that we cannot altogether rule out cross-national comparability

problems. We are currently working to solve these issues. First, we are developing tests

for evaluating global scale identification and creating methods for efficiently selecting

bridge and lateral coders to most efficiently obtain cross-national comparability (Pemstein,

Tzelgov & Wang 2015).

Second, we are currently investigating the use of pairwise case comparisons to facilitate

both cross-national/temporal comparability and greater granularity in the data. Previous

work shows that, even when surveying non-experts, one can leverage pairwise rankings of

cases to produce reasonable scales of democratic institutions (Honaker, Berkman, Ojeda

& Plutzer 2013). Pairwise ranking places lower cognitive demands on raters than ordinal

scoring, and experts may be able to rank cases for which they would have difficulty

generating ordinal scores. Pairwise scoring, therefore, potentially provides a way for coders

to tractably bridge cases that they could not if we asked for more granular information.

We are also investigating the extent to which pairwise ranking can replace ordinal scoring

more generally, with an eye towards reducing the workload placed on V-Dem experts.

Third, our current approach to dealing with temporal dependence and unclear obser-

vation granularity is somewhat ad hoc, and liable to produce estimates of uncertainty

that are too conservative. We hope to deploy new methods for modeling stickiness in

rater errors in IRT models as those methods evolve (Melton, Meserve & Pemstein 2014).

Fourth, Marquardt (2021) integrates cross-nationally comparable data from an external-

to-V–Dem source with the V–Dem measurement model to fully bridge coder-level V–Dem

data and further account for idiosyncratic expert error. He also hierarchically clusters
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coder-level V–Dem variables to increase both the precision and variation in estimates of

similar latent constructs. Both approaches deserve further exploration and utilization in

future research.

Finally, we have begun exploring the use of posterior prediction algorithms to estimate

the degree to which an expert’s ratings for the most recent update year of the V–Dem

dataset diverge from those which we would expect given 1) the expert’s previous coding

behavior (i.e. their threshold and reliability parameters from the previous V–Dem dataset

version) and 2) the ratings of other experts who also provide update ratings for the

same observations as the expert. Preliminary analyses which we conducted with current

V–Dem data manager Oskar Rydén during v12 data collection indicate that these methods

provide valuable insight potentially problematic rater behavior, and will be more fully

incorporated into the V–Dem data collection procedure in the future.

Citation Note

An earlier version of this annually-updated working paper was published as a chapter

in Coppedge, Gerring, Glynn, Knutsen, Lindberg, Pemstein, Seim, Skaaning, Teorell,

Altman, Bernhard, Bizzarro, Krusell, Maguire, Marquardt, McMann, Mechkova, Miri,

Pernes, Staton, Stepanova, Tzelgov & Wang (2020). Please cite this paper to reference

the V–Dem measurement model or BFA procedures.
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A Empirical prior algorithm

1. Create offsets

� Offsets represent the mean difference in confidence-weighted means between
historical/new coders and full-period coders for a given country across overlap
years

� Full period coders who code new or historical periods are treated as full-period
coders

� Define overlap years as those years in which there are new coders (coders who
coded only after 2005) and four or more full-period coders

� Lateral coder scores do not enter into computation of offsets

� Historical and new coder offsets computed separately

2. Add offset to new and historical coders’ values by country-coded, for all years they
coded for that country

3. Restrict offset codings such that they do not exceed ordinal category range of variable

4. Use full data (offset scores for new and historical coders, original values for full-period
coders) to compute priors

� Estimate each coder’s day-weighted confidence for an observation

� Create confidence-weighted average for each country-year, normalize across
years

� Do not include lateral coder scores in estimation of empirical priors

5. Run model with original data and empirical priors
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