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Abstract

We perform various experiments correlating past changes of social indicators about a
country with future stock market returns for that country. The 169 social indicators we
use, which go back as far as the year 1900, are available from the Varieties of Democracy
Project. We use two sets of data for country-wide stock market returns: data compiled
by Dimson, Marsh, and Staunton covers 17 countries going back to 1900, and data from
the MSCI data analytics and index service covering 45 countries going back as far as
1970. We consider five and ten year time windows. This gives us four di↵erent “studies”:
MSCI 10 year, DMS 10 year, MSCI 5 year, and DMS 5 year.

We find the striking result that good changes of the social indicators have a positive
mean (averaged over studies) total correlation (correlation of change vectors indexed by
country-year pairs) with future stock market returns in 157 out of 158 cases in which
the indicator measures something good or bad for society. We obtain a result almost as
strong when the correlation is aggregated di↵erently using the separate country and year
groupings. We perform statistical hypothesis testing to show that, even though the social
indicators are not all independent, these result are exceedingly unlikely to be the result
of random (white noise) stock market returns.

We also perform “positive linear regression” of stock market return on all 158 indica-
tors, which means that the sign of the regression coe�cient for an indicator is constrained
to be positive or negative according to whether a positive change of the indicator is good
or bad. The fraction of data explained by positive regression is shown to be extremely
statistical significant. We calculate a confidence interval for the percentage of data gen-
uinely explained by regression, not just by fitting to noise. The lower end of the confidence
window for the four studies is 11%, 14%, 6%, and 9%.

We include a long appendix on the statistical theory of correlation and (unconstrained)
regression. This provides background to the novel applications of hypothesis testing and
confidence interval calculation in the body of the paper.
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1 Introduction and Overview

This paper reports on analysis to address the question: How are changes in social in-

dicators for a country correlated with future returns in that country’s stock markets?

Although there is a huge amount of work addressing stock market predictability, we have

not been able to find any systematic studies that address the obvious and important

question above. In this paper we perform such a study for the social indicators available

in the Varieties of Democracy (V-Dem) database (Coppedge, Gerring, Lindberg, Teo-

rell, Altman, Bernhard, Fish, Glynn, Hicken, Knutsen, McMann, Pemstein, Skaaning,

Staton, Tzelgov, Wang & Zimmerman 2015a, Coppedge, Gerring, Lindberg, Skanning,

Teorell, Altman, Bernhard, Fish, Glynn, Hicken, Knutsen, McMann, Paxton, Pemstein,

Staton, Zimmerman, Andresson, Mechkova & Mri 2015b, Coppedge, Gerring, Lindberg,

Skaaning, Teorell, Andersson, Marquardt, Mechkova, Miri, Pemstein, Pernes, Stepanova,

Tzelgov & Wang 2015c). This is a large database which covers many indicators for many

countries over many years. In this report we filter to a set of 169 di↵erent indicators

which have ample data. Since our intent is to focus on robust long term trends, we look

at correlation of changes over either five or ten year windows. Our main result is that

the correlations between “good” changes of V-Dem indicators and future stock market

returns are robustly positive.

We see this work as part of the corporate social responsibility (CSR) and environmen-

tal, social, and government (ESG) movements. A preliminary version of the results here

was presented in this broader context in (Leitner & Axelrod 2016). Although our hope

is that this work might ultimately help sway political leaders and investors that social

improvements are good for markets, the focus of this paper is not to push a sociological

agenda, but rather to provide a detailed analysis in the framework of statistical hypoth-

esis testing to show that the positive correlation between good changes for society and

future market improvements is very consistent and not simply a result of random noise

in the data. In this paper we keep focus on overall summary results, avoiding delving

into analyzing results for specific countries or specific years.
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One mistake that is often made when people declare correlation results interesting is

to not account for the fact that that objects of interest are pulled from a large variety

of candidates. This is a mistake because one would expect just by random fluctuation

that some indicators would have larger correlations. So it would be wrong for us to

“cherry-pick” one or two indicators out of 169 which, when looked at in isolation by some

standard statistical test, appear to have a one in a hundred chance of being reproducible

by random noise.

The worry of studying a single indicator in isolation was, in fact, at the genesis

of the current paper. We had noticed V-Dem’s new Women’s Political Empowerment

Index (Sundström, Paxton, Wang & Lindberg December 2015) and we were interested

in studying correlation of that index with financial markets. To put this in context, we

decided to systematically look at the data for V-Dem indicators and their correlations

with the financial markets. We were surprised by the consistency of the result we found:

For 157 our of 158 indicators that measured something good or bad for society, for example

the Women’s Political Empowerment and Political Corruption indicators, good changes

of the indicators have a positive mean total correlation with future stock market returns.

Additionally, the correlation to markets was very close to zero for the 7 indicators that

measure things that are not clearly good or bad, such as the Urbanization indicator. The

other 4 of the 169 indicators we looked at were related to measures of GDP whose past

changes correlate negatively with future stock market returns. GDP behaves similarly in

this respect to this stock markets themselves, which are negatively auto-correlated at the

time scales we look at.

In Section 2, we describe the data we use in this paper. The stock data we use comes

from two di↵erent databases of country-wide total return stock markets indices: “DMS

data”, studied in (Dimson, Marsh & Staunton 2002), and “MSCI” data, coming from

(MSCI data index and analytics service ). The “DMS” data we use is inflation adjusted,

total return country-wide stock index data for seventeen countries from 1900 through

2004. The “MSCI” data is total return country-wide stock data for forty-five countries

starting on (or after) 1970 and going through to the present. The four studies come about

by choosing (i) either a five or a ten year window to measure change and (ii) either the

MSCI or DMS as the source of stock data. The source of data determines the collection

of possible country-years pairs. Each V-Dem indicator provides data for a subset of these

pairs. Section 3 explains how the 169 indicators we look at are chosen from the full

database of V-Dem indicators solely on the basis that the amount of data for the chosen

indicators exceeds various threshold tests.

In Section 4, we present in detail results for the total correlation between past in-

dicator change data and future stock return data. Total correlation here refers to the

correlation of vectors indexed by country-year pairs for which data exists. The “mean

total correlation” mentioned above is the mean over the four di↵erent studies of the total
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correlation. We find that all indicators for which a positive change is a “good” thing have

positive mean total correlation, and all but one of those for which positive change is a

bad thing have negative mean total correlation. We call consistency with the sign of the

correlation with whether an indicator increase is good or bad, the “good-is-good” rule.

Table 4 summarizes the amount of data used in each study. Detailed result for all indica-

tors of the total correlation for each study and the mean of these over all studies are given

in Appendix A. This is a lot of information, which we provide for readers interested in

exploring particular indicators. However, this information is not all independent. Many

of the indicators, for example, are defined as combination of other indicators. For this

reason, we have chosen, by looking through the V-Dem codebook (Coppedge et al. 2015b),

a collection of indicators (also called “codes”), which try to address a “high level” con-

cept by combining together lower level indicators. Table 5 gives these indicators, their

brief descriptions, the question they address, and their mean total correlation with stock

markets.

In Section 5, we address the question of whether the strong results we obtained by

looking at total correlation is dependent upon how we examine the data. We do this

by considering di↵erent approaches to looking at country-year data when one makes

use of the separate country and year groupings. One approach to this kind of study goes

under the moniker of “panel data analysis” with “fixed e↵ect models” and “random e↵ect

models”. See for example (Yeşin 2016), which looks at country-year data for predicting

foreign exchange rates (rather than stock market returns). Rather than rely on this

technical terminology, we keep focus directly on our main object of study, correlation, and

consider the four natural method of defining aggregate correlation that use the grouping

of the data by countries and by years. For grouping by countries, one approach is to take

the average of the correlation over time obtained for each country separately. Similarly,

one can take the average over years of the correlation across countries. We call these

correlations the “within-country” and “within-year” correlations. The other two methods

of aggregation are obtained by similarly averaging correlation for separate countries or

years, but by “tying” the standard deviations together. Tying of standard deviations can

avoid the e↵ects of bad standard deviation estimations for individual countries that do

not have many years worth of data. Appendix B compares the results of the di↵erent

methods of aggregation of correlation for all V-Dem indicators. Table 6 compares the

counts of codes that violate the “good-is-good” rule when the computation is done by

di↵erent methods of aggregation. The table show that the exception rate of 0.6% for

total correlation is reproduced for within-year correlations with tied standard deviations.

It goes up slightly to 1.3% for within-country correlation with tied standard deviation.

For the case of untied standard deviation, the exception rates go up a little more, to 4.4%

and 8.9% for within-country and within-year correlations, which is not surprising because

of the di�culty of estimating standard deviation for groups with small amount of data.
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In any case, these exception rates are all far below the rate of 50% one would expect by

random chance.

While the “good-is-good” result is quite consistent across indicators, the correlation

for individual indicators is modest. In Section 6, we see how additive the “good-is-good”

result is, i.e. how much stronger of a result one can get by taking linear combination

of indicators. The average of the correlations for all 158 good or bad indicators (times

minus one for “bad” indicators) ranges from 8% to 17% in our four di↵erent studies, as

can be seen on the bottom line of Table 7. The bottom line of that table also shows

that a slightly stronger result (ranging from 14% to 23%) is obtained by considering the

correlation of future stock return with the “overall good index”, which is the average of

the (Z-scores of) all the good-or-bad indicators (multiplied by a sign if necessary so that

good changes are positive). The square of the correlation with this index is equal to the

fraction of the variance (the sum of squares of the di↵erence from the mean) of future

stock data which is explained by correlation with the index. This value, known as the

R-squared, ranges from 2% to 5% over the four studies.

In Section 6.2, we find the linear combination of good-or-bad indicators whose coe�-

cients have the same sign as the overall good index that maximize the value of R-squared,

i.e. we regress future stock return against all good or bad indicators subject to the sign

constraint that the regression coe�cient for each indicator either vanishes or else has

sign which agrees with the sign for which changes of the indicator are socially good. We

call such constrained regression positive linear regression, or simply positive regression.

The bottom line of Table 8 show that this optimal R-squared varies from 11% to 18%,

and that the number of active (non-zero) coe�cients ranges from 16 to 24, depending on

the study. This corresponds to an adjusted R-squared, which is a better estimate than

R-squared itself of the fraction of variance explained out of sample, ranging from 9% to

17% (see column real in Table 15).

In Section 7, we show that all of our results are extremely statistically significant

in the sense that they would be very unlikely to be produced by white noise – random

stock returns generated independently from identical normal distributions. We call the

assumption that the stock returns are white noise, our null hypothesis. To begin, Table 9

gives the number and percentage of the good or bad V-Dem indicators whose correlation

with future stock returns have the wrong sign for the good-is-good rule, broken down by

study type and type of correlation aggregation. This is always below 15%, except for a

few studies when looking at within group correlation without tied standard deviations.

We have already remarked that the weaker results when standard deviations are not tied

together is due to the di�culty of estimating standard deviation for groups with small

amounts of data. Focusing on the case of total correlation in Figure 2 and Table 10, we

see that the probability of random chance generating so few (or fewer) exception is less

than a few hundredths of a percent. Note that a “few hundredths of a percent” is much
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higher than the probability one would obtain if the indicators were independent (e.g. the

probability of flipping heads 157 or more out of 158 times is 159 ⇤ 2�158).

Table 12 addresses the question of how many individual indicators have correlations

that appear statistically significant at various levels if looked at individually1. The table

shows, for example, the mean total correlation is statistically significant for 84% of codes

at the traditional five-percent significance level, for 73% at the one-percent significance

level, and for 67% at a level of a tenth of a percent.

Figure 3 and Tables 13 do the same thing for the value of total correlation of future

stock returns with the overall good index that Figure 2 and Tables 10 did for the number

of exception to the good-is-good rule. They show that it is exceedingly improbable for

this total correlation to be produced by white noise. Table 14 shows that the P-values

for the within-country and within-year (with tied standard deviations) versions of this

correlation are also all minuscule, with the exception of the DMS 5 year study where

the P-value of 4% is merely small. As usual, the within-group correlations with untied

standard deviations are not as significant.

In Section 7.3, we consider the statistical significance of the adjusted R-squared for

positive regression, which we mentioned above ranges from 9% to 17%. In the uncon-

strained case, it is natural to look at adjusted R-squared for significance testing against

the null hypothesis since it has mean zero, as opposed to the mean of unadjusted R-

squared which increases with the number of codes being regressed against. In the con-

strained case, there is no simple solution for the distribution of R-squared, although

(Grömping 2010) gives a nice overview of the theory that is known and a computational

package for computing the distribution. No one seems to have studied the appropriate

adjustment to R-squared in the case of constrained regression. The adjustment we use

depends on the number of active codes (rather than all code regressed against). This

seems to be the correct adjustment to make because the mean value of this adjusted

R-squared vanishes, to within the precision of simulation we perform which use 10,000

randomly generated stock return series for each of our four studies. As can be seen in

Figure 4 and Table 15, the distribution of adjusted R-squared when the null hypothesis

is true is strongly peaked around zero and has standard deviation of about 1%. So the

observed adjusted R-squared values are at least nine standard deviations above the mean,

extremely statistically significant!

We mentioned above that adjusted R-squared is “a better estimate than R-squared

itself of the fraction of variance explained out of sample”. The issue of finding the best

1 Here is a lightning summary of statistical significance and hypothesis testing, which are discussed
in more detail in Appendix E.6: The probability that random chance would generate a result (e.g. the
total correlation with a particular indicator) at least as extreme as that actually observed is called the
P-value. The lower the P-value, the less likely it is that the phenomenon occurred by chance. The
P-value is sometimes called the statistical significance level. Formally, one says that one can reject the
null hypothesis at a given significance level p if the P-value is below p.
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estimate of R-squared for an underlying population, based only on observed sampling of

data, has a long history and is the subject of active research in the unconstrained case,

see for example (Yin & Fan 2001, Salh 2015, Nimon, Zientek & Thompson 2015). In

Appendix E, we give a thorough accounting of adjusted R-squared, including an expla-

nation of why it is an approximately unbiased estimate of the population R-squared – the

percentage of data genuinely explained by regression, not just by fitting to noise. We also

explain how to calculate confidence intervals giving a range of likely values for population

R-squared for ordinary linear regression.

In Section 8, we calculate confidence intervals for population R-squared for our pos-

itive regression problem. In summary, because we have enough data, the widths of the

confidence intervals are fairly narrow. So the estimate that on the order of 10% of future

stock returns is explained by positive regression on past indicators is likely to hold up if

the future is like the past.

In Section 9, we give some concluding remarks discussing limitations of, and possible

future directions for, this work.

In the body of the paper we attempt to provide as much detail and require as little

background as possible. In addition, Appendix E is essentially a little monograph on the

mathematics of the probability and statistics of correlation and regression. We attempt

to achieve the contradictory goals of being self-contained, brief, cogent, thorough, and

precise, while providing full mathematical details including some derivations not seen

elsewhere. We assume, to varying degrees throughout the appendix, that the reader is

comfortable with some basic mathematical notation and concepts and has some knowl-

edge of multivariable calculus. Some terminology from linear algebra that is used toward

the end of the Appendix E is summarized in Appendix D.

All simulation results and figures in this paper were produced by custom code written

in Matlab (MathWorks Inc. 2015), with the exception of Figure 5, which was produced

using Mathematica (Wolfram Research Inc. 2014).

As a convenience for readers of the PDF version of this paper, section, footnote, figure,

table, and equation numbers should be clickable hyper-references in most viewers.
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2 Data

Data for all results in the paper comes from three source: V-Dem, DMS, and MSCI. We

describe each of these data sources in turn.

2.1 V-Dem Data

The Varieties of Democracy (V-Dem) institute is “a team of fifteen social scientists on

three continents” who “work with more than 2,500 country experts and a truly global

international advisory board” with the aim of producing and studying better indicators

of democracy. A wealth of information about the project is available at their website:

https://www.v-dem.net/en.

In this paper, we use the V-Dem data release version 5 published in January of

2016, which can be freely downloaded from the V-Dem web site. Specifically, we use

the Country-Year-V-Dem other archive and a few other descriptive documents, which

include:

• A large database (Coppedge et al. 2015a) of 585 indicators (described at the V-Dem

web site as “over 350 V-Dem indicators and indices and over 300 other indicators

from other data sources”). For each indicator and each of 173 di↵erent countries,

the database contains an annual data series for a (country-dependent) subset of the

years 1900 to 2012. Each indicator has a code name. For example the “Women

political empowerment index” has code v2x gender. We will often use the term

“V-Dem code” synonymously with “V-Dem indicator”.

• A “codebook” (Coppedge et al. 2015b) describing each of the V-Dem codes and also

giving background materials and an overview of the structure of all the indicators.

Note that the indicators are not all independent, for example many “higher level”

indicators are built from more basic indicators. Much of this is summarized in the

appendix “Structure of Aggregations - All Indices and Indicators”.

• The document (Coppedge et al. 2015c) describing the methodology used to collect

the data, which includes sections on the “Conceptual Scheme”, “Data Collection”,

and “Measurement”.

• The document (Coppedge, Gerring, Lindberg, Skaaning, Teorell & Ciobanu 2015)

which “lists (a) every country in the envisioned V-Dem database, (b) the identities

of each polity that comprises a country’s history through the twentieth and twenty-

first centuries (e.g., Russia-USSR); (c) the years for which we have collected data

or plan to collect data (in parentheses next to the entry); and (d) the borders of

each country (wherever this might be unclear).”
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• The document (Coppedge, Gerring, Lindberg, Skaaning, Teorell, Andersson, Mechkova,

Pernes & Stepanova 2015) which “contains an overview of the organization and man-

agement of the Varieties of Democracy (V-Dem). It provides information about the

team working on the project, the V-Dem infrastructure and the website, as well as

the outreach and policy-oriented activities, our funding, and the progress of data

collection so far. It also presents the plans for sustainability of our activities and

benchmarks by which the impact of the V-Dem project on the development com-

munity (encompassing both policymakers and academics) can be monitored in the

coming years.”

• The document (Coppedge, Gerring, Lindberg, Skaaning & Teorell 2015) which pro-

vides a “critical review of the field of democracy indices” and “discusses in general

terms how the Varieties of Democracy (V-Dem) project di↵ers from extant indices

and how the novel approach taken by V-Dem might assist the work of activists,

professionals, and scholars.”

2.2 DMS Data

The book Triumph of the Optimists (Dimson, Marsh & Staunton 2002) presents a “com-

prehensive and consistent analysis of investment returns for equities, bonds, bills, cur-

rencies and inflation, spanning sixteen countries, from the end of the nineteenth century

to the beginning of the twenty-first.” The “DMS data” associated with the book is pro-

prietary, but available for sale. For our study, we use an update of the original data set,

which has yearly data series for the years 1900 through 2004 and covers the following

seventeen countries, which include Norway in addition to the sixteen countries studied in

Triumph of the Optimists :

Australia, Belgium, Canada, Denmark, France, Germany, Ireland, Italy, Japan,

Netherlands, Norway, South Africa, Spain, Sweden, Switzerland, United King-

dom, United States

We only use the real equity total return series. This is a carefully constructed stock index

for each country, which is inflation adjusted (real) and includes the (total return) e↵ect

of reinvesting dividends.

The data set we use was purchased from Ibbotson Associates. More recent updates

to the DMS data are available from Morningstar. Rather than use these updates, we

consider studies with the DMS data to be historical “twentieth century” (plus a few

years) studies. In the next subsection, we describe the data set we use for studies with

many more countries and more recent years.
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2.3 MSCI Data

The other source of stock data we use is the MSCI data analytics and index service.

There are 78 countries listed as having “market cap indices” in Figure 1, downloaded

from the MSCI web page https://www.msci.com/en/market-cap-weighted-indexes.

Figure 1: MSCI market cap indices

We found forty-five countries which have country-wide MSCI total return stock indices

starting before the year 2000 and which also have VDEM codes23. We downloaded this

data using the financial data vendor Bloomberg L.P. The start date for the data depends

on the country. MSCI data for all the countries we consider is available up to the present;

however, since the V-Dem database ends in 2012, we only use MSCI data up until that

year4. Table 1 is a list of all countries we study, together with the starting year of the

MSCI data and the Bloomberg “ticker” used to download the MSCI data. Table 2 is a

list of the di↵erent starting years for country return data and the number of countries

with that starting year.

The earliest start year for MSCI returns is 1970. The countries starting that year are

Austria and all of the DMS countries except for Ireland (which starts in 1988, along with

2 In the presentation (Leitner & Axelrod 2016), we studied all countries in the VDEM data base
which were also on the list of Bloomberg tickers from MSCI found at https://www.msci.com/zh/

bloomberg-tickers-end-of-day#bbgeodcountryusd. That study included all the countries included
here plus Qatar, which has MSCI data starting in 2006. The di↵erence between inclusion of Qatar or
not is on the order of rounding error, since the only e↵ect of including Qatar is to include two more data
points in the study of MSCI data with five year windows.

3 The MSCI data is not adjusted for inflation, although the DMS data we use is.
4 This choice was made so they we could treat stock and V-Dem data on an equal footing. However,

when we only consider the future variable to be stock returns, using MSCI data up until 2015 would
allow us to gain three extra data points for most choices of country and V-Dem code.
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country history start date Bloomberg ticker

Argentina 1998-12-31 GDUESAG Index
Australia 1969-12-31 GDDUAS Index
Austria 1969-12-31 GDDUAT Index
Belgium 1969-12-31 GDDUBE Index
Brazil 1998-12-31 GDUEBRAF Index
Canada 1969-12-31 GDDUCA Index
Chile 1998-12-31 GDUESCH Index
China 1992-12-31 GDUETCF Index
Colombia 1998-12-31 GDUESCO Index
Czech Republic 1998-12-31 GDUESCZ Index
Denmark 1969-12-31 GDDUDE Index
Egypt 1994-12-30 GDUESEG Index
Finland 1987-12-31 GDDUFI Index
France 1969-12-31 GDDUFR Index
Germany 1969-12-31 GDDUGR Index
Greece 1987-12-31 GDUESGE Index
Hungary 1998-12-31 GDUESHG Index
India 1992-12-31 GDUESIA Index
Indonesia 1998-12-31 GDUESINF Index
Ireland 1987-12-31 GDDUIE Index
Israel 1998-12-31 GDUESIS Index
Italy 1969-12-31 GDDUIT Index
Japan 1969-12-31 GDDUJN Index
Jordan 1998-12-31 GDUESJO Index
Malaysia 1998-12-31 GDDUMAF Index
Mexico 1987-12-31 GDUETMXF Index
Morocco 1998-12-31 GDUESMO Index
Netherlands 1969-12-31 GDDUNE Index
New Zealand 1987-12-31 GDDUNZ Index
Norway 1969-12-31 GDDUNO Index
Pakistan 1998-12-31 GDUESPF Index
Peru 1998-12-31 GDUESPR Index
Philippines 1998-12-31 GDUESPHF Index
Poland 1998-12-31 GDUESPO Index
Portugal 1987-12-31 GDDUPT Index
Russia 1998-12-31 GDUESRUS Index
South Africa 1998-12-31 GDUESSA Index
Spain 1969-12-31 GDDUSP Index
Sweden 1969-12-31 GDDUSW Index
Switzerland 1969-12-31 GDDUSZ Index
Taiwan 1998-12-31 GDUESTW Index
Thailand 1998-12-31 GDUESTHF Index
Turkey 1998-12-31 GDUESTK Index
United Kingdom 1969-12-31 GDDUUK Index
United States 1969-12-31 GDDUUS Index

Table 1: MSCI countries with start dates and Bloomberg tickers.
DMS countries are in bold.

start year of returns number of countries

1970 16
1988 6
1993 2
1995 1
1999 20

Table 2: Number of countries for various start years of MSCI return data.
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Finland, Greece, Mexico, New Zealand, and Portugal) and South Africa (which starts in

1999, along with Argentina, Brazil, Chile, Colombia, Czech Republic, Hungary, Indonesia,

Israel, Jordan, Malaysia, Morocco, Pakistan, Peru, Philippines, Poland, Russia, Taiwan,

Thailand, and Turkey). In addition there is one country (Egypt) with returns starting in

1995 and two countries (China and India) with returns starting in 1993.

3 Pruning to a List of 169 V-Dem Codes with Enough

Data

We shall be looking at correlations between past changes on either a five or ten year

time scale and future changes on the same time scale. The changes we look at are either

the di↵erence of a V-Dem indicator or a continuously compounded (i.e. logarithmic)

annualized stock market return over the time window of interest. The stock market

returns come from either the DMS or MSCI database. The four studies we look at are

described in Table 3.

Study 1 MSCI ten year window
Study 2 DMS ten year window
Study 3 MSCI five year window
Study 4 DMS five year window

Table 3: Four studies examined. The studies with MSCI data cover the forty-five
countries in Table 1 with returns starting between 1970 and 1999 (and with an
average start year of 1987). The MSCI studies use V-Dem data back to as
early as 1960 to provide a ten year window before the start of stock data. The
studies with DMS data cover the seventeen DMS countries and the years 1900
through 2004.

The DMS data is complete (no missing data) for all seventeen DMS countries and for

the years 1900 through 2004. The MSCI data is also complete for all the MSCI countries

from their starting year through 2012. However, many of the yearly time series associated

with a choice of V-Dem indicator and country either start late, end early, or have several

years in which data is missing. We calculate correlations even when data is missing by

simply ignoring the missing years. But for the correlation results to be meaningful, we

don’t want there to be too many years with missing data or to have data series that are

constant or near constant. We apply three filters which together reduce the original set

of 585 V-Dem indicators to a set of 169 kept indicators which we will focus on.

We add the code “stock” to the list of 169 kept V-Dem indicators; so the full set of

codes we look at has 170 codes.
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3.1 Filter Step 1: Reduce to 251 V-Dem Codes that Have

Enough Data for DMS Countries and Years

Our first step is to filter to a subset of the V-Dem codes which don’t have too much

missing data for any of the DMS countries.

For each of the countries in the V-Dem database, there is specified a starting and

ending year of data and also a starting and ending years for a gap in the middle of data.

All of the individual indicators have data for a subset (sometimes a small subset) of the

years between the start and end years, excluding the gap year.

The structure of the V-Dem database encodes the fact that data (for the years 1900-

2012) is missing for all codes for the following DMS countries and years:

• the start date for V-Dem data for Australia is 1901;

• the start date for V-Dem data for Ireland is 1919; and

• V-Dem data for Germany is missing for the years 1945 through 1949.

This determines a list of “possible ten year past change data years” for each country.

No indicator can have ten year past change data except for the years in this list, although

individual indicators may be missing such data on many other years. The possible ten

year past change data years for all DMS countries are 1910-2012, with the following

exceptions: Australia and Ireland have earliest start years 1911 and 1929, respectively,

and Germany has a gap from 1945 to 1959 (since we require that there be no missing

data between the start and end year of the ten-year window).

For filter step 1, we use the two criteria below as a simple general rule that is flexible

to the fact V-Dem data in the early years is more gappy than data for the later years.

This keeps 251 codes, i.e. about half of the original 585 codes. A V-Dem code is kept if:

• all DMS countries have ten year past change data for that code for at least 50% of

the possible data years in the range 1919 to 2004; and

• all DMS countries have ten year past change data for that code for at least 85% of

possible DMS data years in the range 1949 to 2004.

3.2 Filter Step 2: Reduce to 218 V-Dem Codes that have Enough

Data for MSCI Countries and Years

In filter step 2, we keep 218 codes (out of the 251 codes that survived filter step 1) which

satisfy the following criteria list. A V-Dem code is kept if:

• for all MSCI countries, data for the code ends on or after 2010;
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• for all MSCI countries, data for the code starts on or before 2006; and

• for all MSCI countries, the fraction of years (after the first data year5) with missing

data for the code is less than one third.

3.3 Filter Step 3: Reduce to 169 V-Dem Codes with Enough

Unique Values

For each study, country-year pair in the study, and V-Dem code, we calculate a value,

xDiff = xDiff(study, country, year, code),

which is the di↵erence of the V-Dem indicator for the country across a window ending in

the specified year and of size equal to the window for the study. We are not interested

in considering indicators that remain constant. To measure this, we define

NUV = NUV (study, country, code),

the number of di↵erent (i.e. unique) value that xDiff takes across all years of the study

for the given country, and code6. We would like to focus on indicators that have the

ability to go up, go down, and stay more or less constant.

In filter step 3, we keep 169 codes (out of the 218 codes that survived filter step 2)

which satisfy the following criteria list. A V-Dem code is kept if the following is true for

all four studies in Table 3:

• the mean of NUV (study, country, code) over all countries in the study should be

at least 2; and

• at least 2/3 of the countries in the study have NUV (study, country, code) � 3.

4 Basic Correlation Results

In this section we look at correlation of changes in past and future codes (in the set of 169

kept V-Dem codes plus the code stock) for the four studies in Table 3. In this paper we

report results when the future code is stock, but will keep the discussion general when

we can. For each separate country in each study, we can calculate a simple correlation

of time series for the years in which we have past and future data (change/return data

over the window of the study). The set of all these correlation is a lot of information. We

5 Since we look at V-Dem data in a window of up to ten years in the past of stock return data and
the MSCI annual return data starts in 1970, we only look here at V-Dem data in years on or after 1960.
The “first data year” above refers to the first year data exists for the given code and country.

6 This doesn’t include that value NaN (not a number) indicating missing data.
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would like to obtain some sort of comprehensible aggregate correlation which combines

the data for separate countries and studies together. A primary interest for us is whether

past changes of V-Dem codes that measure “good” things have positive correlation with

future stock market returns. Although we don’t have an objective reference for what

a “good change” is, we feel it is pretty clear for most codes what would generally be

considered good.

In this section, we calculate the total correlation with future stock returns for each

study and past code by combining data for all countries and years in which it is available.

That is, we calculate the correlation of the vectors Xcy and Ycy, where cy is an index that

runs over the country-year pairs for which there is both past and future change data.

Table 4 gives a feel for the amount of data used in each study.

type win nCountries minY maxY nYears nValsMin nValsMean nValsMax

1 MSCI 10 45 1972 2003 32 398 (8.8) 736 (16.4) 739 (16.4)
2 DMS 10 17 1911 1995 85 1313 (77.2) 1395 (82.0) 1445 (85.0)
3 MSCI 5 45 1970 2008 39 726 (16.1) 994 (22.1) 996 (22.1)
4 DMS 5 17 1906 2000 95 1490 (87.6) 1565 (92.0) 1615 (95.0)

Table 4: Amount of data used for each study to calculate total correlation of changes in
a past code with future stock returns. The middle columns give the number of
countries and the range and number of years for which there is some data. The
last columns give the minimum, mean, and maximum statistics (over all past
codes) of the number of data points, i.e. the number of country-year pairs.
Values in parentheses are these statistics divided by the number of countries in
the study.

In Appendix A, we present a table giving the aggregate correlation with future stock

return for all codes and all studies. The column meanCorr gives the average correlation

over all four studies. Rows of the table are sorted in order of decreasing meanCorr.

A glance at the table reveals a remarkable consistency: Codes that measure “good”

things have positive correlation and those that measure “bad” things have negative cor-

relation with future stock market returns. We will make this statement more precise in

a moment. But first we must point out that not every line of this large table is indepen-

dent. For example, there are several “high-level” V-Dem codes that are built from other

V-Dem codes. Table 5 gives a subset of the result of the big table in the Appendix for a

collection of these “high-level” codes.

4.1 Summary of Results:

What’s Good for Society is Good for Markets

We are now ready to examine our basic question of whether past changes of codes that

measure “good” (or “bad”) things have positive (or negative) correlation with future
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R code des question meanCorr

5 v2x_freexp_thick
Expanded freedom of
expression index

To what extent does government
respect press & media freedom, the
freedom of ordinary people to discuss
political matters at home and in the
public sphere, as well as the freedom
of academic and cultural expression?

0.19

6 e_rol_free
Civil liberties and rule
of law index

To what extent are civil liberties
protected, and rule of law observed in
a country?

0.18

8 v2xcs_ccsi
Core civil society
index

How robust is civil society? 0.18

13 v2x_liberal
Liberal component
index

To what extent is the liberal principle
of democracy achieved?

0.17

18 v2x_partip
Participatory
component index

To what extent is the participatory
principle achieved?

0.17

21 v2xcl_rol
Equality before the
law and individual
liberty index

To what extent are laws transparent
and rigorously enforced and public
administration impartial, and to what
extent do citizens enjoy access to
justice, secure property rights,
freedom from forced labor, freedom of
movement, physical integrity rights,
and freedom of religion?

0.17

40 v2x_libdem
Liberal democracy
index

To what extent is the ideal of liberal
democracy achieved?

0.16

48 v2x_gender
Women political
empowerment index

How politically empowered are
women?

0.15

49 v2x_jucon
Judicial constraints on
the executive index

To what extent does the executive
respect the constitution and comply
with court rulings, and to what extent
is the judiciary able to act in an
independent fashion?

0.15

55 v2x_egaldem
Egalitarian democracy
index

To what extent is the ideal of
egalitarian democracy achieved?

0.14

60 v2x_polyarchy
Electoral democracy
index

To what extent is the ideal of
electoral democracy in its fullest sense
achieved?

0.14

79 v2x_EDcomp_thick
Electoral component
index

To what extent is the electoral
principle of democracy achieved?

0.12

165 v2x_corr Political corruption How pervasive is political corruption? -0.11

.

Table 5: High level V-Dem codes. The first column gives the row of the code in Table of
Appendix A. The last column give meanCorr, the average over studies of the
correlation (of vectors indexed by country-year pairs) between the past change
of the code and future stock return. The question column is the question
associated with the code as given in the V-Dem codebook.
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stock market returns. A detailed look at the Table in Appendix A reveal that the answer

is an emphatic yes. This means that, for the data we look at, good or bad changes in

social indicators tend to be followed by good or bad market returns7.

We must admit that, lacking an objective reference, we used our own judgment to

decide that a positive change is good for 144 indicators, bad for 14 indicators, and not

clearly good or bad for 7 indicators. In addition, we note that 4 indicators are related

to measures of GDP (gross domestic product). We feel that a poll would confirm our

judgments, but we invite readers to download the V-Dem codebook (Coppedge et al.

2015b) and judge for themselves.

Our main result is that every past code x in the table satisfies one of the following

conditions.

• When x = stock, meanCorr = �0.20.

This mean reversion e↵ect is the strongest mean correlation in the table. It says

that periods when stocks outperform their mean tend to be followed by period when

they under-perform, and vice-versa.

• When x is about GDP, meanCorr < 0.

Viewing GDP (gross domestic product) as closely coupled with stock market, this

can be seen as a weaker version of the above mean reversion e↵ect.

• When positive change of x is “good”, meanCorr > 0.

• With one exception, when positive change of x is “bad”, meanCorr < 0.

The exception is the code for “Institutionalized autocracy”

(e autoc, R = 142), which has meanCorr = 0.02.

• When the meaning of change of x is “questionable”, |meanCorr| < 0.025,

with the one exception for “HOS proposes legislation in practice”

(v2exdfpphs, R = 77), which has meanCorr = 0.12.

5 Within-Group Correlation

In the previous section, we computed, for each study and past code x, the total correlation

of the vector of past changes (over a past window of five or ten years, depending on the

study) with the vector of future changes for the code y = stock. These vectors each have

one component for every country-year pair for which there is both past and future change

data. In this section, we compare these total correlation results with four methods of

7 A positive (resp. negative) correlation of two variables usually implies the signs of the deviation
from the mean of the variables tend to be the same (resp. the opposite). So when we talk about good
and bad changes above, we are referring to the change relative to the mean change.

18



computing an aggregate “within-group” correlation which use the fact that the country-

year pairs natural divide up into groups by either country or year. In Appendix E.7, we

discuss within group correlation in the abstract. In Section 5.1, we give the formulas used

as applied to our application. In Section 5.2, we give details of the results.

The upshot is that the di↵erent methods of aggregation give similar results. This

is not surprising, since the di↵erent methods are essentially equivalent up to nuances

of how data is weighted. One reason we include these results here is for completeness

and to encourage the reader to think about di↵erent ways to “play” with the data. The

other reason is to respond to the question the reader might possibly have in mind: How

much does the strength of the claim “What’s Good For Society is Good For Markets”

depend on how the data was processed . The answer is that the strikingly strong result of

the previous section is fairly robust to changes (at least of the type we consider in this

section), although it does look a little weaker.

To be specific, we say that a correlation for a code is “consistent with good-is-good” if

it is positive, negative, or about zero (i.e. has absolute value smaller than 0.025) according

to whether the code is deemed “good”, “bad”, or “unclear” (respectively). In the last

section, we saw that the mean of total correlation was “consistent with good-is-good”

in all but 2 out of 165 cases. In this section, we see that for intra-group correlation the

number of exception goes as high as 17 out of 165. So the percentage of exceptions goes

up from about 1% to about 10%. This is still a very low percentage.

5.1 Definitions of Di↵erent Types of Correlation

In this subsection we give explicit formulas for total correlation and two di↵erent types

of within-group correlation (which we will apply to grouping by country and by year).

We include this detail because we don’t know of a standard reference with our exact

formulation (although books on analysis of variance have closely related descriptions)

and we want this paper to be self-contained to those mathematically inclined readers

that are interesting in the precise definitions. In this paper we focus on correlation

between past changes of a V-Dem code x and future changes of stock returns, but to be

general we can consider future changes of any code y, which includes the code stock as

a special case.

For each study s, let Countries(s) and Years(s) be the set of all countries and all data

years of the study. Given codes x and y, let I(x,y, s) be the set of pairs cy of a country

c (in Countries(s)) and year y (in Years(s)) for which there is both past change data for

x and future change data for y available for the study s. Also let Ic(x,y, s) (Iy(x,y, s))

be the set of years (respectively countries) for which there is data for the country c (year

y). Identifying a year y in Ic(x,y, s) with the pair cy, I(x,y, s) equals the disjoint union

of the Ic(x,y, s) over all c in Countries(s). Similarly, I(x,y, s) is equal to the disjoint
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union of the Iy(x,y, s) over all y in Years(s). Let N (x,y, s), Nc(x,y, s), and Ny(x,y, s)

be the number of elements in I(x,y, s), Ic(x,y, s), and Iy(x,y, s). So

N (x,y, s) =
X

c2Countries(s)

Nc(x,y, s)

=
X

y2Years(s)

Ny(x,y, s). (1)

I(x,y, s) is the set of indices for the past and future change vectors Xcy and Ycy. The

total correlation of these vectors is

corr(X, Y ) =
1

N (x,y, s)

X

cy2I(x,y,s)

(Xcy � X̄)(Ycy � Ȳ )

std(X) std(Y )
. (2)

Here X̄ and std(X) are the mean and standard deviation of X. The standard deviation

is the square root of the variance.

X̄ =
1

N (x,y, s)

X

cy2I(x,y,s)

Xcy,

var(X) =
1

N (x,y, s)

X

cy2I(x,y,s)

(Xcy � X̄)2,

std(X) = (var(X))1/2 . (3)

Similar definitions hold for Ȳ and and std(Y )8.

Now we will define the di↵erent versions of within-group correlation. We will describe

the case of grouping by country; grouping by year works similarly. There are two slightly

di↵erent natural definitions of within-group correlation. To define them, we first introduce

the mean, variance, standard deviation, and correlation for a given country c,

X̄c =
1

Nc(x,y, s)

X

Y 2I
c

(x,y,s)

Xcy,

var(Xc) =
1

Nc(x,y, s)

X

Y 2I
c

(x,y,s)

(Xcy � X̄c)
2,

std(Xc) = (var(Xc))
1/2 , (4)

corr(Xc, Yc) =
1

Nc(x,y, s)

X

Y 2I
c

(x,y,s)

(Xcy � X̄c)(Ycy � Ȳc)

std(Xc) std(Yc)
. (5)

The within-group variance of X is the average of the squared di↵erences of Xcy from the

8 For statisticians, the standard deviation here is is normalized as the uncorrected standard deviation.
See Appendix E.5.
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country mean, and the within-group standard deviation is the square root of that,

varwithin�country(X) =
1

N (x,y, s)

X

cY 2I(x,y,s)

(Xcy � X̄c)
2,

stdwithin�country(X) = (varwithin�country(X))1/2 . (6)

(7)

The within-country variance equals a weighted average of the variances for the individual

countries,

varwithin�country(X) =
X

c2Countries(s)

wc var(Xc), (8)

(9)

where the weighting for a country is just the fraction of the data due to that country,

wc =
Nc(x,y, s)

N (x,y, s)
. (10)

One natural definition of within-country correlation is the weighted sum of the corre-

lations per country:

corrwithin�country(X, Y ) =
X

c2Countries(s)

wc corr(Xc, Yc)

=
1

N (x,y, s)

X

cy2I(x,y,s)

(Xcy � X̄c)(Ycy � Ȳc)

std(Xc) std(Yc)
. (11)

The first formula shows that the within-country correlation lies between minus one and

one, since it is the weighted average of quantities that do. The second formula for within-

country correlation is just like the formula for total correlation except that the means

subtracted and standards deviation divided by are country dependent.

The other natural definition of within-country correlation is what can be called the

definition with “tied standard deviations”. This is just the same definition as Eq. 11,

but the per-country standard deviations in the denominator are replaced by the within-

country standard deviations:

corrstd�tied
within�country(X, Y ) =

1

N (x,y, s)

X

cy2I(x,y,s)

(Xcy � X̄c)(Ycy � Ȳc)

stdwithin�country(X) stdwithin�country(Y )
.

(12)

This std-tied, within-country correlation lies between minus one and one because it can

be interpreted as the dot product of two unit vectors, i.e. vectors of length one (see
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Appendix E.7).

5.2 Results for Di↵erent Types of Correlation

The table in Appendix B compares the average (over all four studies) of the correlation

between past changes of data for a code and future stock returns. (To keep the results

manageable, we do not report within group correlations for the individual studies as we

did for total correlation in Appendix A.) The di↵erent methods of calculating an aggregate

correlation between past and future data vectors, Xcy and Ycy, indexed by country-year

pairs for which there is data are:

• total: This is just the correlation between data vectors ignoring group labeling by

either year of country. The means subtracted and standard deviations divided by

are statistics summarizing all country-year data. We say the means and standard

deviations are “tied” (to have the same value independent of country or year).

• within-country: The means subtracted and standard deviations divided by sum-

marize data over all years for a given country. This correlation is a weighted average

over all countries in the study of the country-specific correlation across years.

• within-country, std-tied: The means subtracted depend on the country, but the

standard deviations divided by are independent of country (and year).

• within-year: The means subtracted and standard deviations divided by summarize

data over all countries for a given year. This correlation is a weighted average over

years in the study of the year-specific correlation across countries.

• within-year, std-tied: The means subtracted depend on the year, but the stan-

dard deviations divided by are independent of year (and country).

In Section 4.1, we saw that codes for which a positive change is “good” tended to

have a positive correlation with future stock returns, codes for which a positive change is

“bad” tended to have a negative correlation, and codes for which it is “unclear” whether a

positive change is good or not tended to have correlation about zero (within 0.025 of zero).

In addition, codes that had to do with GDP tended to have a negative correlation with

future stock returns. Stocks themselves tend to be mean reverting (i.e. have a negative

correlation with their future change). In the last section, where we looked at the mean

over studies of the total correlation, there were only two exception to the tendencies just

described. In Table 6 we tabulate the number of exception to these tendencies by type

of code and type of correlation calculation. This table can be derived from the table in

Appendix B, which gives results for individual codes. The exception rates for all good or

bad codes are far below the rate of 50% one would expect by random chance.
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corrType

GDP

4 codes

stock

1 code

bad

14 codes

good

144 codes

unclear

7 codes

good or bad

158 codes

total 0 | 0.0% 0 | 0.0% 1 | 7.1% 0 | 0.0% 1 | 14.3% 1 | 0.6%
within-country 0 | 0.0% 0 | 0.0% 2 | 14.3% 5 | 3.5% 5 | 71.4% 7 | 4.4%
within-country, std-tied 0 | 0.0% 0 | 0.0% 1 | 7.1% 1 | 0.7% 3 | 42.9% 2 | 1.3%
within-year 0 | 0.0% 0 | 0.0% 0 | 0.0% 14 | 9.7% 3 | 42.9% 14 | 8.9%
within-year, std-tied 2 | 50.0% 0 | 0.0% 0 | 0.0% 1 | 0.7% 2 | 28.6% 1 | 0.6%

Table 6: Count of codes for which the mean over all studies of the correlation between
past change of the code with future stock returns is not “consistent with
good-is-good”. Rows correspond to di↵erent methods of computing
correlations from data indexed by country-year pairs. Columns correspond to
di↵erent types of codes.

6 Multi-Factor Regression

We have seen that the signs of the correlation of past changes of individual V-Dem codes

with future stock returns are most often “consistent with good-is-good”, i.e. changes

of indicators for which a positive change is “good” (or “bad”) correlate positively (or

negatively) with future stock returns. This tells us that periods with above average

increase of a good (or bad) indicator tend to be followed by periods with above (or

below) average stock returns. The magnitude of the correlation tells us how large this co-

movement e↵ect is. Specifically the square of the correlation coe�cient is the proportion

of the deviation (from the mean) of future stock market returns that is accounted for by

a simple linear regression on the past V-Dem indicator being considered. This is known

as the R-squared of the regression. It is reviewed in detail in Appendix E.8.

For a typical correlation of ten percent (0.1), the R-squared is only one percent (0.01).

So, although the e↵ect we are seeing is quite consistent, it is a fairly small e↵ect when

judged in terms of power to explain individual observations. This does not mean it is

an inconsequential e↵ect. Just ask any citizen to judge whether they prefer the long

term compounded e↵ects of degraded stock markets following collapses in civil society vs

compounded enhanced stock returns following social improvements.

It is natural for us to ask: How additive are the “good-is-good” improvements “pre-

dicted” by di↵erent indicators? Our first approach to addressing this question is discussed

in Section 6.1, where we compare two things. The first thing is the average correlation

with stocks across all “good or bad” indicators (the 158 V-Dem indicators that we con-

sider “good” or “bad”). The second thing is the correlation of stocks with a “good index”

created from those indicators. The good index is essentially an average of the indicators

multiplied by their “goodness sign” (“+” or “�” as specified in Appendix A).

The second approach to addressing additivity is discussion in Section 6.2. There we

look at positive linear regression of future stock changes on past changes of all “good or

bad” indicators (and various subsets as well). This is just like ordinary linear regression
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except that the sign of the regression coe�cient for a code is constrained to agree with

its goodness sign.

6.1 Average Correlation and Correlation of Average

Before reporting the results of constrained multiple regression, let us consider a simpler

way to combine a set of V-Dem indicators, which we call the “good index”. This is just

the average of the Z-scores9 for the indicators for which data is available, multiplied by

their goodness signs. Let us define this formally.

To begin, we denote the goodness sign for a code x by goodsign(x). This is either +1

or �1, according to the sign in Appendix A.

Given a set, {x1, ..., xk
}, of indicators and a study s, let {Yi, X

1
i , ...X

k
i }

N
i=1 be the

past and future change data, where i labels the country-year pair. We include all years

for which there is past change data for y and for at least one of the xl. Unavailable data

is imputed (filled in) by the mean of available data. N is the size of the index set

I(x1, ...,xk,y, s) =
k[

l=1

I(xl,y, s). (13)

Let Ai be the set of l for which the data X l
i is available (not just filled in by a mean

of available data). Let nAvaili be the number of elements in Ai. Then

goodIndexi =
1

nAvaili

X

l2A
i

goodsign(xl)Z l
i , (14)

Z l
i =

X l
i � X̄ l

std(X l)
. (15)

Each row in Table 7 gives results for a di↵erent set of V-Dem codes. For each of

the studies MSCI 10, DMS 10, MSCI 5, and DMS 5, we report: (i) the correlation between

future stock returns and the goodIndex associated with a code set (called corr index),

and (ii) the average over all codes in the code set of the correlation of future stock returns

with past change of the code times the good sign of the code (called ave corr).

The first five lines of the table just repeat the correlation in the Appendix A for the

five codes with highest meanCorr. corr index equals ave corr for these lines since the

code set is just a single code.

The bottom four lines of the table show results for the code sets being: the top two

9 The Z-score for a data vector is computed by first subtracting the mean of the components of the
vector from the vector and then dividing by the standard deviation. Subtraction of the means changes
the index by an overall constant, which doesn’t e↵ect the correlation coe�cient. Normalizing by dividing
by standard deviations makes the size of the contribution of di↵erent indicators similar. To be precise,
we should say that we divide by the standard deviation of the available data (as opposed to the standard
deviation of the series with missing data filled in with the mean, which can be smaller).
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codes, the top five codes, the high level codes in Table 5, and all V-Dem codes considered

either “good” or “bad”. We see that corr index consistently improves upon ave corr.

The improvement is significant for the bottom line, which reports overall results (for the

code set being all good or bad indicators).

MSCI 10 year DMS 10 year MSCI 5 year DMS 5 year
num corr ave corr ave corr ave corr ave

code set codes index corr index corr index corr index corr

rank 1 1 0.15 0.15 0.26 0.26 0.15 0.15 0.20 0.20
rank 2 1 0.16 0.16 0.26 0.26 0.15 0.15 0.18 0.18
rank 3 1 0.10 0.10 0.24 0.24 0.18 0.18 0.24 0.24
rank 4 1 0.17 0.17 0.22 0.22 0.14 0.14 0.21 0.21
rank 5 1 0.15 0.15 0.26 0.26 0.13 0.13 0.20 0.20
top 2 2 0.16 0.16 0.26 0.26 0.15 0.15 0.20 0.19
top 5 5 0.15 0.15 0.26 0.25 0.16 0.15 0.22 0.21
high level 13 0.16 0.15 0.24 0.21 0.13 0.11 0.19 0.16
all good and bad 158 0.16 0.10 0.23 0.17 0.14 0.08 0.18 0.12

Table 7: Average of correlations and correlations of averages for following sets of
V-Dem codes: the singleton sets with the top five ranked codes in the Table in
Appendix A; the top two and top five codes; the thirteen high level codes
considered in Table 5; and all V-Dem codes which are considered either “good”
or “bad”. Column num codes gives total number of codes in each code set.
Columns corr index (one for each study) give the total correlation of future
stock returns with the goodIndex of each code set. The goodIndex is the
average of the data for the codes (multiplied by the code’s goodsign and
divided by the standard deviation of the code’s data). Columns ave corr give
an average (over codes in a code set) of the total correlation of future stock
returns with each code’s data multiplied by the code’s goodsign.

6.2 Regression with Sign Constraint

The good index (for any given code set) can be written as a linear combination of the

separate indicators. The good index has the property that the sign of the coe�cient

of each indicator agrees with its goodsign. We will call a linear combination with this

property a positive linear combination. In this section, we report on a constrained version

of linear regression which gives the positive linear combination that optimally fits the

data.

For each choice of a study and a code set with k codes, we have a data set consisting of

future stock return data Yi and past change data X1
i , ..., X

k
i , where i labels a country-year

pair. Our regression chooses the coe�cients �i in the model10 (16) which minimize the

10 The usual way of writing a regression models include a constant term. In Eq. 16, this term has been
solved for and equals the sum of the terms involving means. When there is no missing data, the good
index has �

l

= goodsign(xl)/(k std(X l)).
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sum of squared errors (17) subject to the constraint (18).

Ŷ = Ȳ + �1(X
1
� X̄1) + ...�k(X

k
� X̄k), (16)

||Y � Ŷ ||

2 =
NX

i=1

��Yi �
⇥
Ȳ + �1(X

1
i � X̄1) + ...�k(X

k
i � X̄k)

⇤��2 , (17)

�i = 0 or sign(�i) = goodsign(xi) for i = 1, ..., k. (18)

A standard measure of the goodness of fit is called the R-squared. It measures the

fraction of (the variation from the mean of) the Y data that is explained by (the variation

from the mean of) the model Ŷ . To be precise, R-squared is the ratio of the sum of

squares of the “predicted” deviations from the mean to the sum of squares of the actual

deviations, see Eq. 106.

Table 8 gives the number of non-zero coe�cients and the R-squared for positive re-

gression of future stock versus various sets of V-Dem codes. The sets of V-Dem codes

considered are the same as in Table 7, to which Table 8 is comparable.

We observe the following:

• When regressing against a single indicator, as done in the first five rows, the R-

squared values are just the square of the correlation coe�cients reported in Table 7

and Appendix A.

• When regressing against a set of indicators the R-squared values must be greater

than or equal to the maximum of the R-squared values for the indicators considered

one-by-one.

• For row six through eight, the amount by which the R-squared for positive regression

exceeds the maximum for the separate codes is negligible.

• The final row does show a large increase in R-squared, to on the order of 15%, when

all 158 (good or bad) V-Dem codes are regressed against.

In Appendix E.8, we give a detailed account of hypothesis testing and the role of

R-squared for unconstrained linear regression. One fact we discuss, which is known to

anyone familiar with multiple regression, is that the R-squared values become large when

many predictors (X variables) are included and that this is not necessarily significant.

One standard practice is to calculate an “adjusted R-squared”, which only gets larger

when new predictors are added if they reduce the squared error by more than what one
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would be expected by chance. For ordinary regression, the adjustment depends on the

number of predictors and the number of data points. In our constrained case, it is not

a priori clear whether to adjust based on the number of codes in the full code set or to

adjust based on the number of active codes (codes with a non-zero coe�cient). Another

standard practice to evaluate regression results is to apply a formal hypothesis test. But,

as with the adjustment of R-squared, it is unclear how to account for active vs inactive

codes when hypothesis testing. In the next section, we will see how the proper thing to

do in hypothesis testing and R-squared adjustment for our problem is to adjust by the

number of active coe�cients. We will see that the overall positive regression results in

the last row of Table 8 are indeed significant.

num MSCI 10 year DMS 10 year MSCI 5 year DMS 5 year
code set codes k 6=0 R

2
k 6=0 R

2
k 6=0 R

2
k 6=0 R

2

rank 1 1 1 0.02 1 0.07 1 0.02 1 0.04
rank 2 1 1 0.03 1 0.07 1 0.02 1 0.03
rank 3 1 1 0.01 1 0.06 1 0.03 1 0.06
rank 4 1 1 0.03 1 0.05 1 0.02 1 0.04
rank 5 1 1 0.02 1 0.07 1 0.02 1 0.04
top 2 2 1 0.03 2 0.07 2 0.02 1 0.04
top 5 5 2 0.03 2 0.07 3 0.03 2 0.06
high level 13 3 0.04 4 0.07 5 0.02 4 0.04
all good and bad 158 22 0.18 19 0.18 24 0.11 16 0.13

Table 8: Results of positive linear regression of future stock returns versus the various
sets of V-Dem codes considered in Table 7. Non-zero regression coe�cients are
constrained to be positive for “good” codes or negative for “bad” codes.
Column numCodes gives total number of codes in each code set. For each of
the four studies considered here, columns k 6=0 and R2 give the number of
non-zero coe�cients and the R-squared of the regression for that study. These
active codes are displayed in Appendix C on p. 49.

7 Statistical Significance

In the following subsections we explore the statistical significance of the following results

in this paper:

§7.1 The percentage of indicators which follow the “good-is-good” pattern.

§7.2 The value of the correlation of individual indicators and the overall good index.

§7.3 The amount of data accounted for by regression with coe�cients constrained to

equal the goodsign.

Significance testing for our circumstances asks the following question:
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Suppose the past data is given (i.e., the actual V-Dem data is used) and the

future stock return data equals a constant return plus white noise. What is the

P-value, that is the probability, that this random process will produce results

as least as extreme as the real-life observed results?

By white noise we mean that each observation is sampled independently from normal

distributions with mean zero and the same standard deviation.

In formal hypothesis testing of a scientific experiment, one often specifies, prior to

conducting the experiment, a significance level (typically five percent). If the probability

value of obtaining the observed result (or more extreme) by random chance is less than the

significance level, one is said to be entitled to reject the null hypothesis. One is technically

only entitled to reject the specific form that was assumed for the null hypothesis, which,

in our case, is the assumption that stock returns are a constant plus white noise. But a

low probability for the simplest model of random chance often implies a low probability

for related, more subtle, versions of random chance.

We will not take the formal step of deciding whether or not to reject the null hy-

pothesis, but simply report that the probability value for the null hypothesis for various

versions of results R1-R3 above are negligibly small.

7.1 Significance of the Percentage of Indicators which Follow

the “Good-Is-Good” Pattern

Let x be one of the 158 “good or bad codes”, which have goodsign of +1 (positive changes

are “good”) or �1 (positive changes are “bad”). Also let meanCorr(x) be the mean over

the four studies considered here of the total correlation between past changes of x and

future stock returns. One of our most striking results is that the sign of meanCorr(x)

agrees with goodsign(x) for 157 out of 158 cases. Another way to put this result is that

the number of exceptions to the “good-is-good” pattern is 1 in 158, which is less than one

percent. If the data for every pair of codes was always uncorrelated and we didn’t have

to worry about missing data, then, under the null hypothesis of random stock returns,

the probability that meanCorr(x) agrees with goodsign(x) would be an independent

unbiased coin flip for each code. Clearly, the odds of flipping one (or fewer) heads out of

158 coin flips is astronomically small.

7.1.1 Number of Exceptions to “Good-Is-Good” Rule for Within-Group

Correlation

In a moment, we will calculate some P-values properly by simulation. The numbers are

not as astronomically small as the simple coin flip calculation would dictate, but they still

show the results are extremely significant. Before doing this, we will purposely throw a
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little shade on our result by showing how the number of exceptions varies when measured

in slightly di↵erent ways. Table 9 presents the number of exceptions (and the percentage

of exceptions) for the five di↵erent types of correlation reported on in Section 5.2. It

reports on each study separately, as well as for the mean over studies. The number of

exceptions in the mean column is just the sum of the “minus” and “plus” columns in

Table 6. The results for the individual studies clearly have more exceptions than the

mean over studies. Similarly, using any type of within-group correlation leads to more

exceptions than total correlation. This is particularly so for experiments with untied

standard deviations, which is not surprising given the di�culty of estimating standard

deviations for groups with small amounts of data. But the bottom line is that, apart from

some expected exceptions when standard deviations are not tied, the exception rates are

all well below fifty percent.

corrType MSCI 10 DMS 10 MSCI 5 DMS 5 mean
total 13 (8%) 5 (3%) 14 (9%) 6 (4%) 1 (1%)
within-country 50 (32%) 6 (4%) 26 (16%) 11 (7%) 7 (4%)
within-country, std-tied 20 (13%) 5 (3%) 20 (13%) 6 (4%) 2 (1%)
within-year 13 (8%) 48 (30%) 25 (16%) 83 (53%) 14 (9%)
within-year, std-tied 13 (8%) 19 (12%) 15 (9%) 22 (14%) 1 (1%)

Table 9: Number of codes x which are exception to “good is good” rule that the sign of
the correlation for x agrees with goodsign(x). Columns of the table are
di↵erent studies and mean over all studies. Rows of the table are di↵erent
methods of calculating correlation.
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7.1.2 P-Value of Number of Exceptions to “Good-Is-Good” Rule for Total

Correlation

We will now present the P-values for the number of exceptions to the “good is good” rule

for the individual study results for total correlation (see top row of Table 9). We restrict

to looking at total correlation, which was our original method of calculation and which,

as we have just seen, gives stronger results than within-group correlation.

For each study, we calculate a P-value by performing 100,000 trials of simulating stock-

return series by independent sampling from a normal distribution11. For each series, we

calculate the total correlation with each of the V-Dem indicators and calculate the number

of exceptions to the good-is-good rule. Table 10 gives the statistics of the number of

exceptions for the simulated distribution. The column real gives the number of exception

for the real-world stock data. The column pValue gives the frequency with which the

simulation gave the same or fewer exceptions than the real-life stock data. Since we

use a large number of trials, this is a good approximation to the theoretical P-value.

Additional columns of the table give more information about the distribution of the

number of exceptions.

Note that the mean of the simulated number of exceptions is just half of the total

number of “good or bad” codes. This is as expected from symmetry even though the

codes are not independent. If the codes were independent, the standard deviation of the

number of exceptions would be
p

158/2 = 6.3. On the other hand, if the codes were all

identical, the standard deviation would be 158/2 = 79 (because the number of exceptions

would be 158 half of the time and 0 the other half the time). The fact that values in the

std column are much larger than 6.3 indicates that the codes are not all independent.

Figure 2 plots the simulated null-hypothesis distribution, the normal approximation

to the simulation distribution, and the real-world value of the number of exceptions.

The simulated null-hypothesis distribution is concentrated at the top of its normal ap-

proximation, whose much longer tails have been cuto↵ in the figure. This means that

the null-hypothesis distribution of the number of exceptions is very thin-tailed compared

to a normal distribution. This is reflected in Table 10 by the fact that the simulated

pValue is much smaller than the value, pZ, that the normal approximation would yield.

Another measure of thin-tailedness is that the (absolute value of the) Z-score of the min-

imum of the distribution, mean�min

std

, is under 2 for all the studies, whereas it would be

about
p

2 log 100000 = 4.3 if the null-hypothesis distribution were a normal distribution.

11The mean and standard deviation of the normal distribution which we sample from are immaterial
since they are subtracted o↵ and divided out in the calculation.
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Figure 2: Distribution of the number of indicators whose total correlation with future
stock returns disagree with the “good-is-good” rule. Blue curve is based on 100,000 simu-
lations of normally distributed stock returns series; green curve is normal approximation
to the distribution); and the vertical red line shows the real observed value.

study real pValue nSmall min mean std pZ
MSCI 10 13 0.0002 16 11 79 37.2 0.038
DMS 10 5 0 0 9 79 39.9 0.032
MSCI 5 14 0.0001 10 12 79 34.0 0.028
DMS 5 6 0 0 8 79 38.7 0.029

Table 10: Test, for each study, of significance of the number of indicators whose total
correlation with future stock returns disagree with the “good-is-good” rule.
Column real gives the actual number of exceptions (count of codes for which
the sign of the correlation disagrees with the code’s goodsign). Remaining
columns give statistics based on 100,000 simulations with randomly generated
stock returns. nSmall gives the number of simulations for which the number
of exceptions (sign disagreements) is small, i.e. no larger than the actual real
value. pValue gives the fraction nSmall/100000 of trials with a small
number of exceptions. min, mean, and std give the minimum, mean, and
standard deviation of the simulated number of exceptions. Finally, pZ gives
the probability, under a normal distribution with the calculated mean and
standard deviation, that the number of exceptions is at least as small as the
real value. pZ equals the cumulative normal distribution of the Z-score
real�mean

std

.
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7.2 Significance of the Values of Correlation

7.2.1 Distribution of Correlation under Null Hypothesis

Under the null hypothesis that stock returns are sampled randomly and independently

from a normal distribution, the theoretical distribution of the correlation c between the

change data for a given index and stock returns can be calculated from the well-known

fact that the probability distribution for the t-statistic (Eq. 67) is the t-distribution with

⌫ = n�2 degrees of freedom. In Appendix E.6 we derive the distribution of c directly (as

Eq. 65) and show that is equivalent to the t-distribution of the t-statistic. The probability

density function, pdf(c), for c is, up to a normalization constant, equal to 1 � c2 raised

to the power (⌫ � 2)/2. The mean of c is zero and its standard deviation is the square

root of 1/(1 + ⌫).

The P-value that the correlation is greater than an observed real-world value creal

equals the integral of pdf(c) from creal to 1. For large n (which we have here), this P-

value can be calculate using a normal distribution. If creal is nStdOut standard deviations

above the mean (i.e. creal = nStdOut/
p

1 + ⌫), the P-value is the tail probability of being

nStdOut or more standard deviations out on a bell curve. The tail probabilities for various

nStdOut are given in the following table.

nStdOut 0 1 2 3 4 5
tail prob 50% 16% 2.3% 0.1% 0.003% 0.00003%

Table 11: Tail probabilities of a normal distribution for various numbers of standard
deviations above the mean.

For example, if we take n to be 398, which is the minimum number of data points used

to compute the correlation for any of the indicators in any of the studies (see Table 4),

1/
p

n� 1 equals 0.05. So, even when we have minimal data, a typical correlation of 0.1

is two standard deviations above the mean of zero and so has a P-value of 2.3%.

7.2.2 P-Values of Total Correlation for Individual Codes

In a moment we will focus on the P-value for the overall good index (the goodIndex

associated to the set of all 158 good or bad codes). Before doing so we give a feel of the

P-values for each of these indicators separately in Table 12. The top row of the table

gives the percentages of codes which have P-value above 50%, i.e. the percentage of codes

whose correlation has the wrong sign. These are the same percentages given in the first

row of Table 9. Subsequent rows of Table 12 give the percentages of codes which have

P-values above smaller thresholds. The lower right corner of the table shows that for

57% of codes, the chance of randomly obtaining a mean total correlation at least as big

as seen in the real-world data is (by a conservative calculation) below one in a thousand.

32



threshold pVal MSCI 10 DMS 10 MSCI 5 DMS 5 meanCorr
50% 8% 3% 9% 4% 1%
5% 23% 11% 27% 8% 16%
1% 37% 14% 36% 14% 27%
0.1% 54% 16% 60% 20% 43%

Table 12: Percentages of good or bad codes whose total correlation with stocks have
P-value above various thresholds. Results are given for each study separately and for the
mean over studies. In the case of the mean over studies, the number of data points is
taken to be the most conservative value, i.e. the minimum of the number of data points
for each study separately.

7.2.3 P-Values of Total Correlation with the Overall Good Index

The P-values for the total correlation of stock returns with the overall good index are easy

to calculate using the exact distribution (Eq. 65). In Table 13, we give both the exact

P-values and those calculated by simulation. The closeness of the theoretically exact

and simulated P-values in Table 13 should give the reader confidence that the simulated

values in Tables 10 and 15 are close to the theoretically exact, but not easily calculable,

values. Figure 3 shows that the simulated distribution is close to a normal distribution,

which is to be expected (as proved in Appendix E.6) since the number of data points is

large. A numerical confirmation of this closeness is that the Z-score of the maximum of

the distribution, max�mean

std

, is 4.3, 4.6, 4.4, and 4.4 for the di↵erent studies, all of which

are close to the value
p

2 log 100000 = 4.3 for a normal distribution.

The table shows that the P-values calculated exactly, by simulation, or using the nor-

mal distribution based on simulated statistics are all extremely small. In other words, the

positivity of the total correlation of stock returns with the overall good index is extremely

statistically significant. As one might expect considering that fact that tail events are so

rare, the normal distribution based on simulation statistics gives a more precise estimate

than the simply frequency count of large correlations in simulation.
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Figure 3: Distribution of the total correlation of the overall good index with normally
distributed random stock returns series (blue); normal approximation to the distribution
(green); and the real-world value (red).

study real pValue nBig max mean std pZ pNull
MSCI 10 0.16 0 0 0.16 7e-05 0.037 5e-06 4e-06
DMS 10 0.23 0 0 0.12 5e-05 0.026 1e-18 5e-20
MSCI 5 0.14 2e-05 2 0.14 -1e-04 0.032 8e-06 6e-06
DMS 5 0.18 0 0 0.11 -6e-05 0.025 4e-13 1e-13

Table 13: Test, for each study, of significance of the total correlation of the overall good
index with future stock returns. Column real gives the correlation observed. Remaining
columns give statistics based on 100,000 simulations with randomly generated stock re-
turns series. nBig gives the number of simulations for which the simulated correlation
is bigger than the real value. pValue gives the fraction nBig/100000 with big values.
max, mean, and std give the maximum, mean, and standard deviation of the simulated
correlations. pZ gives the probability, under a normal distribution with the calculated
mean and standard deviation, of a correlation being at least as big as the real value. Fi-
nally, column pNull gives the precise value of the P-value for the null hypothesis (i.e. the
above probabilities calculated theoretically, rather than by simulation.
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7.2.4 P-Values for Within-Group Correlation

As we have seen, for example in Table 9, within-group correlations are weaker than

total correlation. P-values for within-group correlations can be calculated by the method

described in Appendix E.7. When there is enough data, P-values can still be calculated

using a normal distribution as they were in the case of total correlation. For the case of

tied standard deviations, the correlation distribution still takes the same form (Eq. 65)

although now the number of degrees of freedom, ⌫, equals n� 1� (#countries) and n�

1�(#years) for the cases of within-country, std-tied and within-year, std-tied,

respectively, whereas it was n � 2 for total correlation. The variance of the correlation

distribution is still 1/(⌫+1). The PDF is more complicated when the standard deviations

are not tied. We refer the reader to the appendix.

Table 14 presents results for the four studies for various types of aggregate correlation

between the overall good index and future stock returns, along with their P-values. To

check how the tables we present “hang together”, we note the following: The total corre-

lation in Table 14 is just another presentation of data we have seen twice already, in (i)

the corr index entries in the last row of Table 7, and (ii) the column real in Table 13.

Also, the pNull entries in the total row of Table 14 are extremely close to the column pZ

in Table 13. The former is calculated by the normal distribution approximation to the

theoretically exact P-value (see Section E.7) and the latter is calculated by the normal

distribution approximation to the simulated distribution.

We note also the following consistency, which does not follow automatically on math-

ematical grounds but is a good illustration of the data hanging together: The DMS 5

study with within-year group correlation (with standard deviation not tied) is the only

problematic case in both Table 14 and Table 9. (For Table 14, “problematic” means

that there is a negative correlation between future stock returns and overall good index

change; for Table 9, “problematic” means that the percentage of good-or-bad V-Dem

codes with a negative correlation is above 50%.) As we have seen before, that these cases

are “problematic” is not surprising given the di�culty of estimating standard deviations

for groups with small amounts of data.

7.3 Significance of Adjusted R-Squared for Constrained Regres-

sion

In Section 6.2, we reported results of positive regression of future stock returns against

past changes of a collection of indicators, where the regression coe�cients are subject

to the constraint that their signs agree with the goodsign of their corresponding codes.

In Table 8, we saw that the fraction of data explained, called R-squared, goes up from

between two and seven percent for regression against a single top ranking code (in which

case the R-squared is simply the square of the correlation coe�cient), to between eleven
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correlation MSCI 10 year DMS 10 year MSCI 5 year DMS 5 year
types corr pNull corr pNull corr pNull corr pNull

total 0.16 5e-06 0.23 1e-18 0.14 8e-06 0.18 5e-13
within-country 0.05 1e-01 0.12 5e-06 0.12 7e-05 0.14 2e-08
within-country, std-tied 0.14 8e-05 0.25 1e-21 0.11 4e-04 0.18 2e-13
within-year 0.17 5e-06 0.02 3e-01 0.10 1e-03 -0.05 2e-02
within-year, std-tied 0.18 5e-07 0.12 5e-06 0.11 3e-04 0.04 4e-02

Table 14: Real-world values of various types of aggregate correlation between the overall
good index and future stock returns, along with their P-Values. Each P-value
is the probability that randomly generated stocks return (independently
sampled from a normal distribution) will generate a correlation with the same
sign and magnitude at least as big as the real-world value.

and eighteen percent for constrained regression against all 158 good or bad codes. In this

subsection, we will show that these result are very statistically significant.

A crucial issue in understanding the significance of a regression is that the R-squared

of the regression necessarily gets larger when new independent variables (predictors) are

added. A common practice is to report an adjusted R-squared which depends on the

number k of predictors:

R2
adj =

(n� 1)R2
� k

n� 1� k
. (19)

As we show for unconstrained regression in Appendix E.8, the adjusted R-squared only

gets larger when new predictors are added if they reduce the squared error by more than

what would be expected by chance.

As pointed out at the end of Section 6.2, for constrained regression it is unclear a

priori which value of k one should use to define adjusted R-squared in Eq. 19. Should we

take k to be the total number of predictors, 158, or should we take k to be the number

of active predictors, i.e. the number of codes with non-zero regression coe�cient, which

ranges from 16 to 22 in Table 8? We will justify below that the proper choice to make is

the number of active predictors.

Figure 4 and Table 15 on page 38 display for adjusted R-squared the kind of figure

and table pair we have seen twice before in this paper. The first pair was Figure 2 and

Table 10 on page 31, which displayed results for the count of errors to the “good-is-good”

rule. The second pair was Figure 3 and Table 13 on page 34, which displayed results for

total correlation with the overall good index.

Specifically, Figure 4 shows: the simulated distribution of adjusted R-squared, ad-

justed by k 6=0; the normal approximation to this simulated distribution; and the real-world

value of the adjusted R-squared. Table 15 gives numerical data about these plots.

We observe the following.
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• The mean of the null-hypothesis distribution of adjusted R-squared values is very

close to zero for all studies. This verifies that we have chosen the proper choice

of adjustment so that, on average, random chance makes the adjusted R-square

vanish.

• The distribution of adjusted R-squared values is somewhat thin-tailed compared to

its normal approximation, at least for three out of four studies. This can be seen

simply by looking at Figure 4. It can also be seen from the fact that Z-score of the

maximum of the distribution, max�mean

std

, is 6.7, 3.0, 4.0, and 3.0 for the di↵erent

studies, which is, with the exception of the first study, a bit bigger than the value
p

2 log 100000 = 4.3 if the null-hypothesis distribution were normal.

• The P-values are extremely small. There were no instances in 100,000 trials in which

the simulated adjusted R-squared was as big as the real-world adjusted R-squared.

The normal approximations, pZ to the P-values are vanishingly small even though

they are probably overestimates because the distributions are thin-tailed. In other

words, the fraction of real-world stock return data that can be modeled as a positive

linear combinations of past changes of V-Dem indicators is extremely statistically

significant.
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Figure 4: Distribution of the adjusted R-squared for positive regression of future stock
returns on all good or bad indicators. Blue shows distribution based on 100,000 simula-
tions of white noise for the stock return series; green shows normal approximation to the
distribution; and red shows the real-world value.

study real pValue nBig max mean std pZ
MSCI 10 0.16 0 0 0.06 -6e-04 0.009 7e-77
DMS 10 0.17 0 0 0.03 -3e-03 0.010 4e-63
MSCI 5 0.09 0 0 0.04 -1e-03 0.010 2e-19
DMS 5 0.12 0 0 0.03 -3e-03 0.010 6e-36

Table 15: Significance of the adjusted R-squared for sign-constrained regression of
future stock return on all good or bad indicators. Column real gives the
adjusted R-squared observed. Remaining columns give statistics based on
100,000 simulations with randomly generated stock returns series. pValue
(nBig) gives the number (fraction) of simulations for which the simulated
adjusted R-squared is bigger than the real value. max, mean, and std give
the maximum, mean, and standard deviation of the simulated adjusted
R-squared values. pZ gives the probability, under a normal distribution with
the calculated mean and standard deviation, of an adjusted R-squared being
at least as big as the real value.
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8 Confidence Intervals for Population R-squared for

Positive Regression

Having established the statistical significance of our positive regression results, we turn

to calculating a 95% confidence interval for the true population R-squared for the model

Y = µ+ X̃� + ✏. (20)

In this probabilistic model, future stock returns Y are equal to an overall mean value,

plus a linear combination of the variation of the indicators from their means, plus white

noise. The null hypothesis is the special case when � vanishes. This is the same form as

the population model described in Appendix E.9.2, although here the model regression

coe�cients must obey our sign constraints. The definition of population multiple correla-

tion coe�cient, ⇢, and population R-squared, ⇢2, remains the same as in the appendix: ⇢

is the correlation (for the population distribution) between Y and the population model

“prediction” Ŷ = µ + X̃�. ⇢2 is the fraction of the variance of Y (in the population

distribution) that is explained by the model prediction.

Confidence intervals for unconstrained regression are discussed in detail in Appendix E.10.

Calculations there are straight-forward to perform using the fact that the distribution of

R2
adj is a simple transformation of a non-central F-distribution, which depends only on

the length of the coe�cient vector � (which is determined ⇢2) and not on the direction

of �.

The definition of confidence interval we use now is the same as described in the

appendix: The confidence interval for ⇢2 is the range of ⇢2 values for which the adjusted R-

squared observed for positive regression does not belong to the extreme wings (containing

less than 2.5% in each wing) of the probability distribution. However, matters are more

complicated in the positivity constrained case because the model distribution of adjusted

R-squared is highly non-trivial and depends on the direction of �.

We will calculate confidence intervals using simulation. To simplify, we restrict our-

selves to consider � vectors which are multiples of the observed regression coe�cient

vector, where the multiplicative constant is determined by ⇢2. In other words, we refrain

from a computationally intractable scan over all directions of �. Based on a few addi-

tional tests, we do not believe that this simplifying restriction on � substantially e↵ects

our results. With the simplification, we were able to proceed in a computationally feasible

way by implementing a binary search for the upper and lower bounds of the confidence

interval, ⇢2lo and ⇢2hi. For each choice of ⇢ encountered in the binary search, we estimate

the probability distribution of R2
adj using ten thousand randomly generated Y vectors.

Table 16 presents the confidence intervals calculated for positive regression and, for

comparison, unconstrained regression using kactive indicators. Note that the observed
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adjusted R-squared values lie approximately in the center of the calculated confidence

intervals for ⇢2. This is a reflection of the fact that adjusted R-squared is an almost

unbiased estimate of ⇢2. Also note the number of data points is large enough so that

the confidence intervals are fairly tight. Two out of four of the confidence intervals lie

entirely above the value 10%; one lies mostly above 10%; and the fourth lies partially

above 10%. A simple summary is that a value of 10% for population R-squared lies in

the confidence interval for all four studies.

One final point to note is that the confidence intervals for unconstrained regression

using kactive indicators are almost identical to that of the positivity constrained confidence

intervals. This is a confirmation of the fact that kactive was the proper value to use when

applying the formula for adjusted R-square in the constrained case, rather than using the

total number of regressors, 158, which is much larger.

positive regression unconstrained regeression
study n kactive R2adj,obs ⇢2lo ⇢2hi ⇢2lo ⇢2hi
MSCI 10 739 22 0.16 0.11 0.21 0.11 0.21
DMS 10 1428 19 0.17 0.14 0.21 0.13 0.22
MSCI 5 996 24 0.087 0.055 0.12 0.051 0.12
DMS 5 1598 16 0.12 0.093 0.15 0.094 0.17

Table 16: For each study: the number of data points used, the number of non-zero
regression coe�cients and the observed value of adjusted R-squared for
positive regression, and the confidence intervals for population R-squared for
regression with our without the positivity constraint.
For the DMS studies, the column n specifying the number of data points used
is less than the nValsMax column in Table 4 which specifies how many
country-year pairs have some V-Dem indicator data. This is because the
DMS data ends earlier than the V-Dem data.
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9 Conclusion

We have documented that, over a five or ten year time scale, there has historically been,

on average, a consistent positive correlation between future returns of a country’s stock

market and past changes of the same country’s indicators that are socially “good”. Of

course the broadness of our claim is limited by the data we tested it with. For social

indicators, we only use data from the V-Dem database (Coppedge et al. 2015a) which

ends in the year 2012 and contains data for 173 countries, some of which goes back as

far as 1900. Our work is by definition limited to look only at those countries which have

available stock market data. Within this constraint, we were able to get a fairly wide

coverage of countries and years by looking at two di↵erent databases of stock market data:

DMS data (Dimson, Marsh & Staunton 2002, and data updates) covering 17 countries

from 1900 to 2004; and MSCI data (MSCI data index and analytics service ) covering 45

countries going back as far as 1970 and ending in 2012 (since that is when the V-Dem

data ends).

Our results break down into four studies. Each study corresponding to a choice of

either a five or ten year time scale and either the DMS or MSCI data (and the set of

countries and years associated with them). Our initial, basic measure of consistency of

correlation was striking: The average over all four studies of the total correlation (across

country-year pairs) between “good” past democracy indicators changes and future stock

market returns is positive for 157 out of the 158 indicators that were selected solely based

on whether they had enough data. Robustness of this result is shown by its consistency

across all four studies. However, a second limitation of our work is that we have not

divided the data up in a way to do proper in-sample vs out-of-sample testing.

The third limitation of this work that we will mention is that there is no objective

definition of the “good” direction of change of a V-Dem indicator, although it is somewhat

implicit in the V-Dem codebook (Coppedge et al. 2015b). We have provided details results

for individual indicators in appendices in the hope that some readers might want to delve

into details. Although it is not objective, we have deliberately use the word “good” so

that we can state the result in a manner that we hope will sway the powers that be:

What’s good for society tends to be good for its markets.

Although it seems obvious to the “naked eye” that our basic result is statistically

significant, one must account for the fact that the V-Dem indicators are not at all mutually

independent. Since the consistency of the e↵ect seems striking and since we know of no

comparable results, we have presented here a detailed statistical analysis of our basic

result as well as related experiments. We limit ourselves to formal hypothesis testing,

foregoing, for example, detailed factor analysis. The extreme statistical significance of our

initial result is confirmed by hypothesis testing of both the percentages of exception to

the “good-is-good” rule as well as the values of the total correlation for individual codes.
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We also saw extreme statistical significance for all four studies of the total correlation of

future stock returns with the “overall good index”, which is a signed average of all of the

(suitable normalized) indicators. The within-year and within-group (with tied standard

deviations) versions of this correlation were also very significant.

Although the sign of the correlations is robustly significant, the magnitude is not very

big. It is natural to ask how much these small e↵ects add together. To address this,

we looked at positive regression of future stock returns on all the indicators, i.e. linear

regression with coe�cients constrained to have the “good” sign. We again found that

the result were extremely statistically significant. For the positive regression results, we

went beyond hypothesis testing against a null hypothesis and calculated 95% confidence

intervals for what is known as the population R-squared, which is the percentage of data

genuinely explained by regression, not just by fitting to noise. The lower end of the

confidence window for the four studies was 11%, 14%, 6%, and 9%.

We have emphasized several limitations to our work in this conclusion in the hopes

of stimulating critical thought and future work. One simple, concrete thing to do in the

future would be to see if our results carry over to updates of the V-Dem database and to

other countries and indicators. Another approach would be to use more complex models

for both the e↵ect of interest and the noise. It would be natural to apply techniques

such as Granger causality testing discussed in econometric textbooks (Hamilton 1994, for

example) or the theory of causal models discussed in statistic textbooks (Darlington &

Hayes 2017, for example). Or one could focus on e↵ects associated with particular sets

of indicators, time periods, and countries. This would amount to adding a market focus

to an already large literature relating social and economic e↵ects (Ahlerup, Baskaran &

Bigsten 2016, Knutsen 2014, just to pick two examples).

Most ambitiously, we hope that future work will understand how the broad brush

pattern that social improvements are correlated with future market improvements fits in

as part of the research community’s evolving understanding of the complex, dynamical,

non-linear relation between social and economic changes.
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A Table of All Total Correlations

This appendix contains a table giving the total correlation with future stock return for all

codes and all four studies in Table 3. The column meanCorr gives the average correlation

over all four studies. Rows of the table are sorted in order of decreasing meanCorr.

The first column, R, specifies the rank order. The notes column specifies additional

information about the code. For the code stock, the note is simply ‘stock’. For V-Dem

codes that are derived from measures of GDP, the note is simply ‘GDP’. For all other

codes, the first character of the note specifies whether a positive change in the code is:

‘+’ – a good thing ; ‘-’ – a bad thing , or ‘?’ – unclear. The symbol ‘f’ indicates that the

wording in the description of the code sounds funny, but upon checking the definition in

the V-Dem codebook (Coppedge et al. 2015b), positive is good. Finally, the symbol ‘h’

indicates that the code is one of the “high-level” codes looked at in Table 5.

R code des

mean

corr

corr

MSCI

10

corr

DMS

10

corr

MSCI

5

corr

DMS

5

notes

1 v2x_freexp Freedom of expression index 0.19 0.15 0.26 0.15 0.20 +

2 v2xcl_disc Freedom of discussion 0.19 0.16 0.26 0.15 0.18 +

3 v2meslfcen Media self-censorship 0.19 0.10 0.24 0.18 0.24 + f

4 v2mecenefm Government censorship e↵ort - Media 0.19 0.17 0.22 0.14 0.21 + f

5 v2x_freexp_thick Expanded freedom of expression index 0.19 0.15 0.26 0.13 0.20 + h

6 e_rol_free Civil liberties and rule of law index 0.18 0.16 0.24 0.14 0.19 + h

7 v2clrelig Freedom of religion 0.18 0.20 0.25 0.09 0.19 +

8 v2xcs_ccsi Core civil society index 0.18 0.18 0.22 0.12 0.19 + h

9 v2clslavef Freedom from forced labor for women 0.18 0.20 0.26 0.09 0.16 +

10 v2csrlgrep Religious organization repression 0.18 0.21 0.25 0.09 0.16 +

11 v2cldiscw Freedom of discussion for women 0.18 0.16 0.24 0.14 0.16 +

12 v2xme_altinf Alternative sources of information index 0.17 0.15 0.25 0.09 0.19 +

13 v2x_liberal Liberal component index 0.17 0.15 0.23 0.14 0.16 + h

14 v2mecrit Print/broadcast media critical 0.17 0.19 0.24 0.10 0.15 +

15 v2cldiscm Freedom of discussion for men 0.17 0.10 0.25 0.15 0.18 +

16 v2clacfree Freedom of academic and cultural expression 0.17 0.10 0.26 0.15 0.18 +

17 v2x_gencl Women civil liberties index 0.17 0.20 0.26 0.09 0.14 +

18 v2x_partip Participatory component index 0.17 0.16 0.24 0.09 0.18 + h

19 v2meaccess Media access 0.17 0.14 0.22 0.15 0.16 +

20 v2cldmovew Freedom of domestic movement for women 0.17 0.14 0.25 0.12 0.17 +

21 v2xcl_rol Equality before the law and individual liberty index 0.17 0.17 0.22 0.12 0.16 + h

22 v2juhcind High court independence 0.17 0.15 0.25 0.13 0.15 +

23 v2psparban Party ban 0.17 0.17 0.22 0.11 0.17 + f

24 v2xcl_slave Freedom from forced labor 0.17 0.20 0.23 0.09 0.14 +

25 v2cseeorgs CSO entry and exit 0.16 0.15 0.21 0.10 0.20 +

26 v2xdl_delib Deliberative component index 0.16 0.15 0.23 0.11 0.17 +

27 v2xcl_dmove Freedom of domestic movement 0.16 0.15 0.23 0.12 0.15 +

28 v2x_cspart Civil society participation index 0.16 0.15 0.26 0.10 0.15 +

29 v2juncind Lower court independence 0.16 0.14 0.21 0.17 0.13 +

30 v2mebias Media bias 0.16 0.07 0.24 0.11 0.23 + f

31 v2x_gencs Women civil society participation index 0.16 0.17 0.24 0.10 0.13 +

32 v2clstown State ownership of economy 0.16 0.07 0.27 0.05 0.25 +

33 v2xlg_legcon Legislative constraints on the executive index 0.16 0.12 0.21 0.17 0.14 +

34 v2mecorrpt Media corrupt 0.16 0.10 0.21 0.16 0.16 + f

35 v2csreprss CSO repression 0.16 0.13 0.22 0.11 0.18 +

36 v2dlconslt Range of consultation 0.16 0.17 0.21 0.12 0.13 +

37 v2x_frassoc_thick Freedom of association (thick) index 0.16 0.15 0.19 0.12 0.16 +

38 v2jureview Judicial review 0.16 0.18 0.16 0.14 0.13 +

39 v2merange Print/broadcast media perspectives 0.16 0.13 0.25 0.05 0.19 + f

40 v2x_libdem Liberal democracy index 0.16 0.12 0.19 0.12 0.19 + h
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R code des

mean

corr

corr

MSCI

10

corr

DMS

10

corr

MSCI

5

corr

DMS

5

notes

41 v2dlreason Reasoned justification 0.15 0.20 0.20 0.06 0.15 +

42 v2psoppaut Opposition parties autonomy 0.15 0.12 0.22 0.11 0.16 +

43 v2mefemjrn Female journalists 0.15 0.05 0.25 0.16 0.15 +

44 v2x_partipdem Participatory democracy index 0.15 0.13 0.19 0.11 0.18 +

45 v2clacjstw Access to justice for women 0.15 0.16 0.24 0.09 0.12 +

46 v2clkill Freedom from political killings 0.15 0.11 0.22 0.11 0.17 +

47 v2lginvstp Legislature investigates in practice 0.15 0.10 0.23 0.16 0.12 +

48 v2x_gender Women political empowerment index 0.15 0.18 0.21 0.08 0.13 + h

49 v2x_jucon Judicial constraints on the executive index 0.15 0.13 0.22 0.12 0.13 + h

50 v2clslavem Freedom from forced labor for men 0.15 0.19 0.22 0.04 0.14 +

51 v2x_delibdem Deliberative democracy index 0.15 0.13 0.16 0.11 0.18 +

52 v2cltrnslw Transparent laws with predictable enforcement 0.15 0.12 0.22 0.09 0.16 +

53 v2lgqstexp Legislature questions o�cials in practice 0.15 0.17 0.21 0.12 0.09 +

54 v2dlengage Engaged society 0.14 0.11 0.20 0.12 0.15 +

55 v2x_egaldem Egalitarian democracy index 0.14 0.14 0.18 0.10 0.16 + h

56 v2psbars Barriers to parties 0.14 0.15 0.18 0.11 0.13 + f

57 v2jureform Judicial reform 0.14 0.08 0.25 0.15 0.08 +

58 v2xcl_acjst Access to justice 0.14 0.17 0.20 0.10 0.10 +

59 v2pepwrgen Power distributed by gender 0.14 0.13 0.21 0.09 0.13 +

60 v2x_polyarchy Electoral democracy index 0.14 0.12 0.16 0.09 0.18 + h

61 v2cldmovem Freedom of domestic movement for men 0.14 0.10 0.19 0.10 0.15 +

62 v2lgotovst Executive oversight 0.14 0.15 0.14 0.12 0.14 +

63 v2meharjrn Harassment of journalists 0.14 0.03 0.21 0.12 0.18 +

64 v2clfmove Freedom of foreign movement 0.14 0.15 0.15 0.10 0.14 +

65 v2csprtcpt CSO participatory environment 0.13 0.11 0.23 0.06 0.14 +

66 v2clacjstm Access to justice for men 0.13 0.10 0.18 0.13 0.12 +

67 v2cltort Freedom from torture 0.13 0.06 0.23 0.09 0.15 +

68 v2dlcountr Respect counterarguments 0.13 0.10 0.21 0.06 0.15 +

69 v2lgoppart Legislature opposition parties 0.13 0.10 0.20 0.10 0.12 +

70 v2x_egal Egalitarian component index 0.13 0.17 0.19 0.09 0.08 +

71 v2clrspct Rigorous and impartial public administration 0.13 0.07 0.19 0.13 0.13 +

72 v2lgcomslo Lower chamber committees 0.13 0.09 0.27 0.06 0.10 +

73 v2clprptyw Property rights for women 0.13 0.21 0.17 0.04 0.09 +

74 v2xeg_eqdr Equal distribution of resources index 0.13 0.16 0.17 0.08 0.10 +

75 v2xcl_prpty Property rights 0.13 0.17 0.22 0.02 0.09 +

76 v2csgender CSO women’s participation 0.13 0.13 0.21 0.07 0.10 +

77 v2exdfpphs HOS proposes legislation in practice 0.12 0.14 0.17 0.07 0.12 ?

78 v2cscnsult CSO consultation 0.12 0.10 0.23 0.06 0.11 +

79 v2x_EDcomp_thick Electoral component index 0.12 0.11 0.14 0.07 0.17 + h

80 v2jucomp Compliance with judiciary 0.12 0.09 0.19 0.11 0.10 +

81 v2elffelr Subnational elections free and fair 0.12 0.09 0.20 0.08 0.12 +

82 v2pssunpar Subnational party control 0.12 0.14 0.16 0.08 0.09 +

83 v2pscnslnl Candidate selection-national/local 0.12 0.05 0.18 0.12 0.12 +

84 v2exembez Executive embezzlement and theft 0.12 0.09 0.16 0.13 0.08 + f

85 v2clsocgrp Social group equality in respect for civil liberties 0.12 0.11 0.20 0.08 0.07 +

86 v2juhccomp Compliance with high court 0.11 0.09 0.20 0.07 0.11 +

87 v2csrlgcon Religious organization consultation 0.11 0.11 0.17 0.08 0.10 +

88 v2pehealth Health equality 0.11 0.09 0.18 0.06 0.12 +

89 v2lgfunds Legislature controls resources 0.11 0.17 0.12 0.10 0.06 +

90 v2juaccnt Judicial accountability 0.11 0.13 0.12 0.10 0.09 +

91 v2psplats Distinct party platforms 0.11 0.02 0.22 0.03 0.16 +

92 v2pepwrsoc Power distributed by social group 0.11 0.09 0.18 0.04 0.12 +

93 v2x_genpp Women political participation index 0.11 0.08 0.19 0.04 0.11 +

94 v2exrescon Executive respects constitution 0.10 0.07 0.17 0.08 0.10 +

95 v2psswitch Party switching 0.10 0.18 0.13 0.06 0.05 +

96 v2psprlnks Party linkages 0.10 0.10 0.13 0.08 0.08 +

97 v2psorgs Party organizations 0.10 0.07 0.14 0.03 0.14 +

98 v2pepwrort Power distributed by sexual orientation 0.10 0.02 0.24 0.02 0.11 +

99 e_pelifeex Life expectancy 0.10 0.07 0.06 0.02 0.22 +

100 v2exbribe Executive bribery and corrupt exchanges 0.09 0.08 0.14 0.13 0.02 + f

101 v2xel_frefair Clean elections index 0.09 0.06 0.10 0.04 0.17 +

102 v2jupurge Judicial purges 0.09 0.01 0.19 0.03 0.13 + f

103 v2dlcommon Common good 0.09 0.10 0.12 0.07 0.07 +

104 v2jucorrdc Judicial corruption decision 0.09 0.08 0.09 0.14 0.04 +

105 v2xps_party Party system institutionalization index 0.09 0.04 0.15 0.05 0.11 +

106 v2lgcrrpt Legislature corrupt activities 0.09 0.07 0.15 0.04 0.08 +

107 v2exthftps Public sector theft 0.09 0.10 0.14 0.05 0.05 + f

108 v2elffelrbin Subnational elections binary 0.09 0.04 0.17 0.02 0.12 +

109 v2ellocons Lower chamber election consecutive 0.08 0.08 0.06 0.05 0.14 +

110 v2x_accex Elected executive index 0.08 0.07 0.16 -0.03 0.13 +
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R code des

mean

corr

corr

MSCI

10

corr

DMS

10

corr

MSCI

5

corr

DMS

5

notes

111 v2lgstafflo Lower chamber sta↵ 0.08 0.04 0.19 -0.00 0.09 +

112 v2lgdsadlo Representation of disadvantaged social groups 0.08 0.06 0.13 0.03 0.08 +

113 v2clprptym Property rights for men 0.08 0.08 0.16 -0.01 0.08 +

114 v2asuffrage Su↵rage 0.08 0.06 0.13 -0.07 0.19 +

115 v2svstterr State authority over territory 0.07 0.05 0.06 0.05 0.14 +

116 v2lgfemleg Lower chamber female legislators 0.07 -0.04 0.30 -0.07 0.11 +

117 v2ellocumul Lower chamber election cumulative 0.07 0.15 -0.01 0.07 0.09 +

118 v2exremhsp HOS removal by legislature in practice 0.07 0.05 0.12 0.11 0.02 +

119 v2msuffrage Male su↵rage 0.07 0.07 0.10 -0.08 0.20 +

120 v2pepwrses Power distributed by socioeconomic position 0.07 0.14 0.11 -0.01 0.04 +

121 v2dlunivl Means-tested v. universalistic policy 0.07 0.10 0.12 0.03 0.02 +

122 v2fsuffrage Female su↵rage 0.06 0.06 0.12 -0.06 0.15 +

123 v2lgello Lower chamber elected 0.06 0.03 0.14 -0.06 0.14 +

124 v2svstpop State authority over population 0.06 0.02 0.05 0.05 0.13 +

125 v2ex_elecleg Legislature directly elected 0.06 0.02 0.16 -0.09 0.15 +

126 v2jupoatck Government attacks on judiciary 0.06 -0.06 0.15 0.05 0.10 + f

127 e_polity Combined POLITY score 0.06 -0.01 0.04 0.08 0.12 +

128 v2jupack Court packing 0.06 -0.04 0.11 0.09 0.07 +

129 v2psprbrch Party branches 0.06 0.03 0.11 0.04 0.05 +

130 v2dlencmps Particularistic or public goods 0.05 0.05 0.07 0.08 0.01 +

131 v2xel_regelec Regional government index 0.05 -0.00 0.16 -0.01 0.06 +

132 v2excrptps Public sector corrupt exchanges 0.05 0.01 0.13 0.03 0.03 + f

133 v2peedueq Educational equality 0.05 0.08 0.08 0.01 0.03 +

134 e_democ Institutionalized democracy 0.05 -0.03 0.02 0.08 0.11 +

135 e_polcomp Political competition 0.05 -0.02 0.02 0.08 0.11 +

136 e_exconst Executive constraints 0.04 -0.04 0.02 0.08 0.11 +

137 e_exrec Executive recruitment 0.04 -0.04 0.01 0.08 0.11 +

138 e_parcomp The competitiveness of participation 0.04 -0.04 0.01 0.08 0.11 +

139 e_xrcomp Competitiveness of executive recruitment 0.04 -0.04 0.01 0.08 0.11 +

140 e_parreg Regulation of participation 0.04 -0.05 0.01 0.08 0.11 +

141 v2xel_elecparl Legislative or constituent assembly election 0.02 0.02 0.05 -0.01 0.04 +

142 e_autoc Institutionalized autocracy 0.02 -0.06 -0.01 0.07 0.10 -

143 v2psnatpar National party control 0.02 0.11 -0.08 0.10 -0.04 +

144 v2xdd_dd Direct popular vote index 0.02 0.08 -0.03 -0.03 0.07 +

145 e_peaveduc Education 15+ 0.02 0.01 0.01 0.08 -0.02 +

146 v2elsnlsff Subnational election unevenness 0.00 0.08 -0.05 0.05 -0.07 +

147 v2ddnumvot Number of popular votes this year 0.00 -0.05 0.03 0.02 0.01 ?

148 v2ddplebyr Occurrence of plebiscite this year -0.00 -0.00 0.02 0.00 -0.02 ?

149 e_miurbani Urbanization -0.00 0.03 -0.02 0.01 -0.03 ?

150 e_mipopula Population total -0.01 -0.06 0.02 -0.05 0.03 ?

151 e_miurbpop Urban population -0.02 -0.09 0.04 -0.06 0.03 ?

152 v2pscomprg Party competition across regions -0.02 -0.15 0.02 -0.01 0.05 ?

153 v2clrgunev Regional unevenness in respect for civil liberties -0.03 0.03 -0.03 -0.04 -0.07 -

154 e_migdpgrolns GDP Growth (rescaled) -0.04 -0.14 0.01 -0.12 0.06 GDP

155 e_migdpgro GDP Growth -0.05 -0.15 0.00 -0.11 0.06 GDP

156 e_miinflat Inflation -0.05 -0.14 -0.03 -0.05 0.01 -

157 v2csantimv CSO anti-system movements -0.06 -0.02 0.03 -0.17 -0.08 -

158 e_peedgini Educational inequality, Gini -0.08 -0.20 -0.05 -0.09 0.00 -

159 v2pscohesv Legislative party cohesion -0.09 -0.18 -0.09 -0.05 -0.05 -

160 v2lgdsadlobin Representation of disadvantaged social groups binary -0.10 -0.04 -0.14 -0.07 -0.14 -

161 e_migdppc GDP per capita -0.10 -0.23 0.06 -0.24 0.00 GDP

162 v2x_pubcorr Public sector corruption index -0.10 -0.11 -0.18 -0.08 -0.04 -

163 v2exdfvths HOS veto power in practice -0.11 -0.14 -0.15 -0.08 -0.07 -

164 v2x_execorr Executive corruption index -0.11 -0.12 -0.15 -0.14 -0.04 -

165 v2x_corr Political corruption -0.11 -0.11 -0.15 -0.14 -0.06 - h

166 e_migdppcln GDP per capita, logged, base 10 -0.13 -0.16 -0.12 -0.23 -0.02 GDP

167 v2exdfdmhs HOS dismisses ministers in practice -0.14 -0.14 -0.22 -0.05 -0.14 -

168 v2exdfdshs HOS dissolution in practice -0.14 -0.13 -0.19 -0.16 -0.09 -

169 v2exdfcbhs HOS appoints cabinet in practice -0.17 -0.19 -0.21 -0.13 -0.15 -

170 stock country stock returns -0.20 -0.18 -0.23 -0.21 -0.16 stock

45



B Table of Mean Correlations for Di↵erent Aggre-

gation Methods

This appendix contains a table comparing di↵erent methods of calculating correlation

between past changes of data for a code and future stock returns. For a given study and

code, the past and future data are vectors, Xcy and Ycy, indexed by country-year pairs for

which there is data. As in Appendix A, rows of the table are sorted in order of decreasing

mean over studies of the total correlation. In Appendix A, the mean total correlation

had the column heading “meanCorr”. Here it has the heading “total”, to distinguish

it from the columns “within-country”, “within-country, std-tied”, “within-year”, and

“within-year, std-tied”, which give the mean over studies of the di↵erent version of group

correlation discussed in Section 5. As in Appendix A, the first two columns specify the

rank order and the code, and the last column specifies additional notes.

R code

total within-country

within-country

std-tied

within-year

within-year

std-tied

notes

1 v2x_freexp 0.19 0.14 0.19 0.09 0.13 +

2 v2xcl_disc 0.19 0.13 0.18 0.11 0.14 +

3 v2meslfcen 0.19 0.13 0.19 0.06 0.12 + f

4 v2mecenefm 0.19 0.13 0.19 0.08 0.09 + f

5 v2x_freexp_thick 0.19 0.14 0.18 0.06 0.12 + h

6 e_rol_free 0.18 0.13 0.17 0.06 0.13 + h

7 v2clrelig 0.18 0.08 0.16 0.03 0.14 +

8 v2xcs_ccsi 0.18 0.12 0.17 0.04 0.13 + h

9 v2clslavef 0.18 0.15 0.18 0.07 0.13 +

10 v2csrlgrep 0.18 0.08 0.15 0.07 0.15 +

11 v2cldiscw 0.18 0.12 0.17 0.10 0.11 +

12 v2xme_altinf 0.17 0.10 0.17 0.03 0.11 +

13 v2x_liberal 0.17 0.10 0.16 0.05 0.13 + h

14 v2mecrit 0.17 0.11 0.17 0.08 0.10 +

15 v2cldiscm 0.17 0.11 0.18 0.07 0.11 +

16 v2clacfree 0.17 0.10 0.17 0.08 0.12 +

17 v2x_gencl 0.17 0.12 0.17 0.03 0.11 +

18 v2x_partip 0.17 0.06 0.17 0.04 0.13 + h

19 v2meaccess 0.17 0.12 0.18 0.02 0.09 +

20 v2cldmovew 0.17 0.11 0.19 0.03 0.08 +

21 v2xcl_rol 0.17 0.09 0.15 0.04 0.12 + h

22 v2juhcind 0.17 0.10 0.16 0.06 0.10 +

23 v2psparban 0.17 0.09 0.17 0.07 0.11 + f

24 v2xcl_slave 0.17 0.12 0.15 0.07 0.12 +

25 v2cseeorgs 0.16 0.11 0.16 0.02 0.10 +

26 v2xdl_delib 0.16 0.07 0.17 0.04 0.11 +

27 v2xcl_dmove 0.16 0.09 0.16 0.01 0.09 +

28 v2x_cspart 0.16 0.06 0.16 0.05 0.12 +

29 v2juncind 0.16 0.09 0.15 0.10 0.11 +

30 v2mebias 0.16 0.10 0.16 -0.00 0.09 + f

31 v2x_gencs 0.16 0.09 0.16 0.07 0.10 +

32 v2clstown 0.16 0.07 0.14 0.06 0.12 +

33 v2xlg_legcon 0.16 0.11 0.16 0.07 0.13 +

34 v2mecorrpt 0.16 0.10 0.15 0.04 0.10 + f

35 v2csreprss 0.16 0.13 0.17 0.03 0.09 +

36 v2dlconslt 0.16 0.06 0.16 0.04 0.11 +

37 v2x_frassoc_thick 0.16 0.12 0.15 0.06 0.11 +

38 v2jureview 0.16 0.08 0.14 0.07 0.12 +

39 v2merange 0.16 0.07 0.15 0.03 0.10 + f

40 v2x_libdem 0.16 0.10 0.15 0.06 0.10 + h
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R code

total within-country

within-country

std-tied

within-year

within-year

std-tied

notes

41 v2dlreason 0.15 0.07 0.15 0.05 0.09 +

42 v2psoppaut 0.15 0.07 0.15 0.06 0.11 +

43 v2mefemjrn 0.15 0.16 0.17 0.07 0.09 +

44 v2x_partipdem 0.15 0.09 0.15 0.04 0.09 +

45 v2clacjstw 0.15 0.11 0.15 0.01 0.06 +

46 v2clkill 0.15 0.07 0.13 0.06 0.10 +

47 v2lginvstp 0.15 0.09 0.15 0.06 0.12 +

48 v2x_gender 0.15 0.11 0.16 0.03 0.08 + h

49 v2x_jucon 0.15 0.05 0.13 0.03 0.12 + h

50 v2clslavem 0.15 0.07 0.13 0.05 0.10 +

51 v2x_delibdem 0.15 0.09 0.15 0.05 0.08 +

52 v2cltrnslw 0.15 0.09 0.16 0.07 0.09 +

53 v2lgqstexp 0.15 0.06 0.13 0.09 0.12 +

54 v2dlengage 0.14 0.04 0.13 0.05 0.09 +

55 v2x_egaldem 0.14 0.07 0.14 0.04 0.08 + h

56 v2psbars 0.14 0.08 0.13 0.04 0.09 + f

57 v2jureform 0.14 0.07 0.15 0.06 0.10 +

58 v2xcl_acjst 0.14 0.09 0.12 0.02 0.10 +

59 v2pepwrgen 0.14 0.08 0.14 0.04 0.07 +

60 v2x_polyarchy 0.14 0.09 0.13 0.04 0.08 + h

61 v2cldmovem 0.14 0.06 0.14 -0.00 0.08 +

62 v2lgotovst 0.14 0.07 0.13 0.07 0.10 +

63 v2meharjrn 0.14 0.09 0.14 0.02 0.07 +

64 v2clfmove 0.14 0.09 0.15 0.02 0.06 +

65 v2csprtcpt 0.13 0.08 0.12 0.04 0.09 +

66 v2clacjstm 0.13 0.06 0.12 0.03 0.08 +

67 v2cltort 0.13 0.07 0.12 0.05 0.09 +

68 v2dlcountr 0.13 0.07 0.14 0.03 0.09 +

69 v2lgoppart 0.13 0.07 0.11 0.05 0.12 +

70 v2x_egal 0.13 0.05 0.10 0.02 0.10 +

71 v2clrspct 0.13 0.06 0.12 0.05 0.07 +

72 v2lgcomslo 0.13 0.08 0.13 0.05 0.09 +

73 v2clprptyw 0.13 0.06 0.14 0.03 0.07 +

74 v2xeg_eqdr 0.13 0.06 0.12 0.03 0.10 +

75 v2xcl_prpty 0.13 0.06 0.13 0.03 0.09 +

76 v2csgender 0.13 0.05 0.13 0.04 0.08 +

77 v2exdfpphs 0.12 0.04 0.14 0.08 0.07 ?

78 v2cscnsult 0.12 0.09 0.15 0.01 0.07 +

79 v2x_EDcomp_thick 0.12 0.06 0.11 0.04 0.07 + h

80 v2jucomp 0.12 0.04 0.10 0.04 0.10 +

81 v2elffelr 0.12 0.07 0.12 0.03 0.09 +

82 v2pssunpar 0.12 0.02 0.10 0.06 0.10 +

83 v2pscnslnl 0.12 0.01 0.08 0.09 0.13 +

84 v2exembez 0.12 0.02 0.12 0.04 0.07 + f

85 v2clsocgrp 0.12 0.04 0.10 0.02 0.08 +

86 v2juhccomp 0.11 0.03 0.10 0.03 0.09 +

87 v2csrlgcon 0.11 0.07 0.08 0.02 0.09 +

88 v2pehealth 0.11 0.10 0.14 0.04 0.06 +

89 v2lgfunds 0.11 0.05 0.12 0.05 0.08 +

90 v2juaccnt 0.11 0.00 0.11 0.03 0.09 +

91 v2psplats 0.11 0.05 0.12 0.04 0.10 +

92 v2pepwrsoc 0.11 0.04 0.10 0.02 0.08 +

93 v2x_genpp 0.11 0.10 0.13 -0.01 0.02 +

94 v2exrescon 0.10 0.04 0.09 0.01 0.07 +

95 v2psswitch 0.10 0.05 0.05 0.05 0.10 +

96 v2psprlnks 0.10 0.06 0.11 0.01 0.05 +

97 v2psorgs 0.10 0.07 0.12 0.02 0.04 +

98 v2pepwrort 0.10 0.07 0.11 0.01 0.04 +

99 e_pelifeex 0.10 0.10 0.13 -0.00 0.05 +

100 v2exbribe 0.09 0.04 0.10 0.03 0.05 + f

101 v2xel_frefair 0.09 0.04 0.07 -0.02 0.07 +

102 v2jupurge 0.09 0.07 0.09 0.03 0.05 + f

103 v2dlcommon 0.09 0.05 0.10 0.03 0.05 +

104 v2jucorrdc 0.09 0.02 0.08 0.05 0.08 +

105 v2xps_party 0.09 0.07 0.11 0.05 0.05 +

106 v2lgcrrpt 0.09 0.00 0.08 0.06 0.07 +

107 v2exthftps 0.09 0.02 0.09 0.06 0.09 + f

108 v2elffelrbin 0.09 0.06 0.07 0.04 0.06 +

109 v2ellocons 0.08 0.10 0.09 0.08 0.06 +

110 v2x_accex 0.08 0.04 0.09 0.03 0.04 +
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R code

total within-country

within-country

std-tied

within-year

within-year

std-tied

notes

111 v2lgstafflo 0.08 0.10 0.09 0.02 0.05 +

112 v2lgdsadlo 0.08 0.04 0.10 -0.01 0.02 +

113 v2clprptym 0.08 0.01 0.05 0.00 0.07 +

114 v2asuffrage 0.08 0.06 0.09 -0.00 0.02 +

115 v2svstterr 0.07 0.07 0.04 0.04 0.03 +

116 v2lgfemleg 0.07 0.11 0.08 -0.02 -0.02 +

117 v2ellocumul 0.07 0.08 0.08 0.08 0.06 +

118 v2exremhsp 0.07 0.08 0.11 0.02 0.02 +

119 v2msuffrage 0.07 0.05 0.08 0.00 0.03 +

120 v2pepwrses 0.07 -0.02 0.04 0.02 0.06 +

121 v2dlunivl 0.07 0.00 0.08 0.05 0.04 +

122 v2fsuffrage 0.06 0.05 0.07 -0.01 0.02 +

123 v2lgello 0.06 0.04 0.07 -0.00 0.03 +

124 v2svstpop 0.06 0.03 0.04 0.06 0.03 +

125 v2ex_elecleg 0.06 0.05 0.07 0.00 0.03 +

126 v2jupoatck 0.06 0.03 0.06 0.00 0.01 + f

127 e_polity 0.06 0.06 0.06 0.06 0.02 +

128 v2jupack 0.06 0.03 0.06 -0.01 0.02 +

129 v2psprbrch 0.06 0.06 0.08 0.02 0.01 +

130 v2dlencmps 0.05 -0.03 0.04 0.01 0.06 +

131 v2xel_regelec 0.05 0.01 0.05 0.02 0.03 +

132 v2excrptps 0.05 -0.02 0.04 0.01 0.03 + f

133 v2peedueq 0.05 0.03 0.07 -0.02 0.02 +

134 e_democ 0.05 0.05 0.05 0.06 0.01 +

135 e_polcomp 0.05 0.05 0.05 0.06 0.01 +

136 e_exconst 0.04 0.04 0.05 0.04 0.01 +

137 e_exrec 0.04 0.04 0.05 0.05 0.01 +

138 e_parcomp 0.04 0.05 0.05 0.05 0.01 +

139 e_xrcomp 0.04 0.03 0.04 0.05 0.01 +

140 e_parreg 0.04 0.04 0.04 0.01 0.00 +

141 v2xel_elecparl 0.02 0.02 0.02 0.01 0.02 +

142 e_autoc 0.02 0.03 0.03 -0.03 -0.00 -

143 v2psnatpar 0.02 -0.01 0.02 0.03 0.02 +

144 v2xdd_dd 0.02 0.01 0.03 -0.02 0.01 +

145 e_peaveduc 0.02 0.06 0.05 0.03 0.01 +

146 v2elsnlsff 0.00 -0.02 -0.01 -0.01 0.01 +

147 v2ddnumvot 0.00 0.00 0.00 -0.02 -0.02 ?

148 v2ddplebyr -0.00 -0.00 0.00 -0.01 0.00 ?

149 e_miurbani -0.00 -0.06 0.01 0.06 0.05 ?

150 e_mipopula -0.01 -0.11 -0.05 0.02 -0.00 ?

151 e_miurbpop -0.02 -0.04 0.06 0.01 -0.01 ?

152 v2pscomprg -0.02 -0.03 -0.02 -0.04 -0.01 ?

153 v2clrgunev -0.03 -0.02 -0.03 -0.02 -0.05 -

154 e_migdpgrolns -0.04 -0.08 -0.06 -0.03 0.00 GDP

155 e_migdpgro -0.05 -0.09 -0.06 -0.03 0.00 GDP

156 e_miinflat -0.05 -0.04 -0.01 -0.03 -0.08 -

157 v2csantimv -0.06 -0.06 -0.06 -0.04 -0.04 -

158 e_peedgini -0.08 -0.13 -0.12 -0.09 -0.12 -

159 v2pscohesv -0.09 -0.05 -0.06 -0.03 -0.08 -

160 v2lgdsadlobin -0.10 -0.07 -0.13 -0.01 -0.06 -

161 e_migdppc -0.10 -0.02 -0.05 -0.15 -0.19 GDP

162 v2x_pubcorr -0.10 -0.01 -0.09 -0.05 -0.10 -

163 v2exdfvths -0.11 -0.08 -0.13 -0.05 -0.04 -

164 v2x_execorr -0.11 -0.02 -0.10 -0.05 -0.07 -

165 v2x_corr -0.11 0.02 -0.11 -0.06 -0.09 - h

166 e_migdppcln -0.13 -0.06 -0.06 -0.13 -0.15 GDP

167 v2exdfdmhs -0.14 -0.10 -0.16 -0.07 -0.07 -

168 v2exdfdshs -0.14 -0.08 -0.15 -0.10 -0.09 -

169 v2exdfcbhs -0.17 -0.09 -0.18 -0.10 -0.10 -

170 stock -0.20 -0.27 -0.26 -0.08 -0.11 stock
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C Table of High Level and Active Codes

The table below lists all codes which are either in the list of high level codes given in

Table 5 or are active codes (codes with non-zero regression coe�cient) for the constrained

multiple regression of stocks again all good or bad codes, reported on in the last line of

Table 8. For each code, we give the description and indicate with asterisks whether the

code is high level and which studies it is active for.

N code des inHL in1 in2 in3 in4

1 v2meslfcen Media self-censorship * *

2 v2x_freexp_thick Expanded freedom of expression index *

3 e_rol_free Civil liberties and rule of law index *

4 v2xcs_ccsi Core civil society index *

5 v2clslavef Freedom from forced labor for women * *

6 v2x_liberal Liberal component index *

7 v2x_partip Participatory component index *

8 v2cldmovew Freedom of domestic movement for women *

9 v2xcl_rol Equality before the law and individual liberty index *

10 v2mebias Media bias *

11 v2clstown State ownership of economy * * *

12 v2mecorrpt Media corrupt *

13 v2jureview Judicial review * *

14 v2x_libdem Liberal democracy index *

15 v2dlreason Reasoned justification *

16 v2mefemjrn Female journalists * * *

17 v2clacjstw Access to justice for women *

18 v2lginvstp Legislature investigates in practice *

19 v2x_gender Women political empowerment index *

20 v2x_jucon Judicial constraints on the executive index *

21 v2x_egaldem Egalitarian democracy index *

22 v2jureform Judicial reform * *

23 v2pepwrgen Power distributed by gender *

24 v2x_polyarchy Electoral democracy index *

25 v2lgcomslo Lower chamber committees *

26 v2clprptyw Property rights for women *

27 v2csgender CSO women’s participation *

28 v2x_EDcomp_thick Electoral component index *

29 v2csrlgcon Religious organization consultation * * *

30 v2pehealth Health equality * *

31 v2psswitch Party switching * *

32 e_pelifeex Life expectancy * * *

33 v2exbribe Executive bribery and corrupt exchanges * *

34 v2ellocons Lower chamber election consecutive *

35 v2lgstafflo Lower chamber staff *

36 v2svstterr State authority over territory * * *

37 v2lgfemleg Lower chamber female legislators * * *

38 v2ellocumul Lower chamber election cumulative * * * *

39 v2msuffrage Male suffrage *

40 v2jupoatck Government attacks on judiciary * *

41 v2peedueq Educational equality *

42 e_parreg Regulation of participation * * *

43 e_autoc Institutionalized autocracy * *

44 v2psnatpar National party control * *

45 v2xdd_dd Direct popular vote index * *

46 e_peaveduc Education 15+ * *

47 v2clrgunev Regional unevenness in respect for civil liberties *

48 e_miinflat Inflation * * *

49 v2csantimv CSO anti-system movements * *

50 e_peedgini Educational inequality, Gini * * *

51 v2pscohesv Legislative party cohesion *

52 v2lgdsadlobin Representation of disadvantaged social groups binary * * *

53 v2x_execorr Executive corruption index *

54 v2x_corr Political corruption *

55 v2exdfdshs HOS dissolution in practice *

56 v2exdfcbhs HOS appoints cabinet in practice * * *
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D Definitions from Linear Algebra

In this appendix we collect a few basic definition we will need from the subject of linear

algebra. Our goal is to give a heads up of terminology for readers who already have

some familiarity with basic operations with matrices and vectors. The only place in

this paper where we use anything but the simplest terminology from this appendix is in

Appendix E.8 through E.10.

A vector space is a set of elements, called vectors, which can be added together or

multiplied by a real number to produce another element of the set. The definition of

a vector space requires that the operations of addition and multiplication obey certain

natural axioms. The general definition of a vector space allows the real numbers to be

replaced by a general field of numbers, called the field of scalars. The act of multiplication

of a scalar by a vector is called scalar multiplication. For example, the space Rn of column

vectors with n components is a vector space.

A subspace V of larger vector space (which will always be Rn in this paper) is a subset

of that space which has the property that all multiples of a vector in V by a real number

and all sums of vectors in V belong to V .

A linear map from a vector space V to a vector space W is a function L from V

to W which takes addition to addition and multiplication to multiplication, i.e. so that

L(v+v0) = L(v)+L(v0) and L(rv) = rL(v) for v and v0 vectors in V and r a real number.

A linear map from Rk to Rn can be identified with an n⇥k matrix X so that L(�) = X�

for any vector � in Rk. A linear combination of a set of vectors X1, ..., Xk in Rn with

weights �1, ... �k in R is the sum of the vectors multiplied by their corresponding weights.

Letting X be the n⇥ k matrix whose columns are the vectors X1, ... , Xk in Rn and �

be the column vector with components �1, ..., �k, the linear combination may be written

as a matrix multiplication:

X� = �1X
1 + ...+ �kX

k. (21)

The set of all such linear combination of the vectors {X l
}

k
l=1 is a subspace of Rn called

the span of the vectors:

Span({X l
}

k
l=1) = {�1X

1 + ...+ �kX
k
2 Rn; �1, ..., �k 2 R}. (22)

The vectors {X1
}

k
l=1 are called linearly independent if no non-zero linear combination

of them vanishes, i.e. if the only solution of Eq. 21 is the vector � of all zeros. If the

vectors are linearly independent, then every vector in their span can be written as a

linear combination for a unique choice of �. In that case, {X l
}

k
l=1 is called a basis for the

subspace that they span.
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A vector space is finite dimensional if it has a finite basis. Any two bases of a finite

dimensional vector space have the same number of elements, called its dimension.

The sum of subspaces V and W of Rn is the subspace, V +W consisting of all sums

of a vector in V and a vector in W . This sum is called a direct sum, written V �W , if

the zero vector is the only vector in common to V and W . Any vector in the direct sum

V �W can be written uniquely as v + w, where v is in V and w is in W .

D.1 Orthogonality

The dot product of vectors v and w in Rn is the sum of the product of their components:

v · w =
nX

i=1

vi wi. (23)

The length of v is the square root of the dot product of v with itself,

||v|| =
p

v · v. (24)

The dot product of v and w is the product of their lengths times the cosine of the angle

between them:

v · w = cos(✓)||v|| ||w||. (25)

Vectors v and w in Rn are called orthogonal if their dot product is zero. This means that

either one of the vectors is the zero vector or the two vectors are perpendicular.

A linear map from one vector space to another that preserves length is call an orthog-

onal transformation. This generalizes the notion of rotation.

The orthogonal projection of Rn onto a subspace V is the linear map ⇧V from Rn

to V which leaves vectors in V unchanged and takes vectors orthogonal V to the zero

vector. For a given vector Y 2 Rn, ⇧V (Y ) is called the orthogonal projection of Y onto

V . If V is the span of the vectors {X l
}

k
l=1, then the projection matrix may be written12

⇧Span({Xl}k
l=1)

= X(XTX)�1XT . (26)

Every finite dimensional subspace V of Rn has an orthonormal basis {ul
}

k
l=1. This

means that the vectors each have unit length and are orthogonal to each other. This can

be summarized by saying that the matrix UTU is the k⇥k identity matrix. Multiplication

by the matrix U = [u1...uk] is an orthogonal transformation from Rk to V . The inverse

12 Eq. 26 assumes that the matrix X

T

X is invertible. This is equivalent to the condition that the
columns of X are linearly independent, i.e. X� only vanishes when � is the zero vector. Our discussion
of regression below will assume independence.
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of this transformation is multiplication by the transpose UT .

An orthonormal basis {ul
}

k
l=1 can be constructed from a generic basis {vl}kl=1 by

the Gramm-Schmidt orthonormalization process. This Gramm-Schmidt basis is uniquely

characterized by the fact that u1 is a positive multiple of v1 and the dot product of uk

with vk is positive for all k.

E Elements of Probability and Statistical Theory

For an individual flip of a coin, it would be an incredibly complex problem to decide in

advance whether it comes up heads or tails. But it is common sense notion that there is

about a fifty percent chance of heads and a fifty percent chance of tails. We think of a

coin as “fair” if those chances are exactly fifty-fifty. We can can test a coin by observing

a large number of flips. We modify our assumption that the coin is fair if the observed

deviation from fifty-fifty is substantial. Similarly, we can assume, test, and modify the

assumption that each coin flip is independent of environmental factors and the result of

previous flips.

Probability theory provides a general framework to model our assumptions. We may

model anything. Our “coin” can metaphorically ask the discrete question of whether the

change of an indicator of the return of a stock market is positive or negative. Or we can

ask, as we have in this paper, how the (future) returns of stock markets are related to

past changes of indicators.

A probability model, also called a probability “distribution”, is a theoretical construct

from which we think observed data is drawn. The word “drawn” comes from the paradigm

example of drawing balls from an urn, which generalizes a simple coin flip to the case of

several discrete outcomes. The model specifies the probability of possible outcomes. For

example, the probability of drawing a white ball from an urn with three white and five

black balls is 3/8.

We need not believe that a model is a full description of reality, just that it is provides

a useful approximation to salient elements of the real world. We sometimes call a theo-

retical distribution the population distribution and data selected from that distribution

as samples. (In the medical and social science fields, the “population” is often envisaged

as a large cohort of people from which the researcher has taken multiple samples.) The

population distribution model may be described by and depend on one or more unknown

parameters, for example the probability that a coin flip will be heads.

Statistical theory provides a framework for making precise statements (i.e. educated

guesses) about the parameters of a population model based on a sample of data. The

statements may be: point estimates – specific estimates of population parameters; con-

fidence intervals – ranges of values for parameter values; or hypothesis tests – tests of

specific statements about the model.
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E.1 Basics of Probability Distributions

A probability distribution on a random variable X taking value in a set S, called the

sample space, assigns a probability, P (X 2 S), which is between 0 and 1, to each subset

of S. If S is a discrete set , a probability distribution is determined by a probability

mass function, which specifies the probability of each element of S. The probability of a

general subset of S is then just the sum of the probabilities of the individual elements in

the subset. If X takes continuous values, the probability distribution may be specified by

a probability distribution function (PDF), which is a function on the sample space. The

probability of a general subset of S in this case is the integral of the PDF over the set.

P (X 2 S) =

8
<

:

P
x2S p(x) for S discrete with probability mass function p

R
x2S p(x) for S continuous with PDF p.

(27)

Above, we have followed the convention of using an upper case letter when referring to

the random variable in the abstract and a lower case letter to represent an individual

sample from the distribution.

There is an extended definition of the integral for which the second expression in

Eq. 27 (and Eq. 28 below) applies to both the discrete and continuous cases. With

this extended definition in mind, we can refer to the probability mass function p or the

probability density function p above simple as the distribution function.

For f a function on S, the expectation value, or mean, of f(X) is the probability-

weighted average of f over all values of a sample x.

E[f(X)] =

8
<

:

P
x2S p(x)f(x) for S discrete with probability mass function p

R
x2S p(x)f(x) for S continuous with PDF p.

(28)

The variance of X is the expectation value of the square of the di↵erence of X from its

mean; and the standard deviation of X is the square root of the variance:

var(X) = E[(X � µX)
2] =

Z

x2S
p(x)(x� µX)

2,

std(X) =
p

var(X), (29)

where

µX = E[X] (30)

is the mean of X.

If the value of X are real numbers, we define the cumulative probability distribution
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to be the function of a top value x, which gives the probability that X is below x:

P (X  x) =

Z x

�1
dx0 p(x0). (31)

Here we have written the di↵erential dx0 of the dummy variable explicitly.

E.2 Joint Distributions

A joint distribution for two random variablesX and Y , taking values in SX and SY respec-

tively, is just a probability distribution on the product space SX ⇥ SY . It is determined

by a joint distribution function p(x, y).

We say that X and Y are independent if the joint distribution is just the product of

separate distributions for X and Y 13:

p(x, y) = p(x) p(y). (32)

An opposite extreme to independence is when Y is a function g of X. In that case14

p(x, y) =

8
<

:
p(x) for y = g(x)

0 for y 6= g(x).
(33)

The marginal distribution for Y is the distribution of the variable Y by itself which

has the property that, for any function F of Y , the expectation value of F using the

marginal distribution is the same as the expectation value using the joint distribution of

X and Y :

E[F ] =

Z

y

p(y)F (y) =

Z

(x,y)

p(x, y)F (y). (34)

Above, we have indicated the variables being integrated over in the subscripts to the

integral signs, but we have not written down the di↵erentials because the appropriate

symbols would vary depending on circumstances. We know spell out some examples.

If X takes values in Rk and Y in Rl and both variables are unconstrained (so samples

(x, y) may range over the whole of Rk
⇥Rl, not just a lower dimensional subset as would

13 In Eq. 32, we have abused notation and used the same symbol p for functions that are distinguished
by the variables that they depend upon.

14 A subtle explanation can be given to spell out how Eq. 33 is not an abuse of notation. This would
include, for example, a discussion of how the probability distribution p(x, y) has support on a set that
is in one-one correspondence with S

X

, namely the graph of g, which is the subset of S
X

⇥ S

Y

consisting
of all pairs (x, g(x)).
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be the case if, for example, one was a function of the other), then

E[F ] =

Z
dly p(y)F (y) =

Z
dkx dly p(x, y)F (y). (35)

So

p(y) =

Z
dkx p(x, y). (36)

If X takes values in Rk and y in Rl is a function of g of x, then:

E[F ] =

Z
dly p(y)F (y) =

Z
dkx p(x)F (g(x)). (37)

In particular, if g is invertible, i.e. y is a change of variables of x, then l must equal k. If

k is one, then

p(y) = p(x)

✓
dx

dy

◆
= p(x)

✓
dg(x)

dx

◆�1

. (38)

When k is greater than one, the derivative on the right is replaced by the (absolute value

of the) determinant of the Jacobian matrix of partial derivatives,
�
@g

i

@xj

�
.

E.3 Covariance and Correlation

Given two random variables X and Y , the covariance of X and Y is the expectation

value of the product of their displacements from their respective means:

cov(X, Y ) = E[(X � µX)(Y � µY )] = E[X Y ]� E[X]E[Y ]. (39)

When X equals Y , the covariance of X and Y reduces to the variance of X. When X

and Y are independent, the covariance of X and Y equals zero.

The correlation, or more formally the Pearson product-moment correlation coe�cient,

of X and Y is their covariance divided by the product of their standard deviations:

corr(X, Y ) =
cov(X, Y )

std(X) std(Y )
=

E[(X � µX)(Y � µY )]

std(X) std(Y )
. (40)

The correlation is undefined when the standard deviation of X or Y vanishes, i.e. if either

variable is constant. If X and Y are independent (and neither is constant), the correlation

vanishes.

The Z-score of X is the random variable that is a linear transformation of X having
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mean zero and standard deviation one:

ZX =
X � µX

std(X)
. (41)

The correlation of X and Y equals that expectation of the product of their Z-scores:

corr(X, Y ) = E[ZX ZY ]. (42)

We will now explain the geometric reason why the correlation always lies in the range

between �1 and 1. The picture here will be useful later when we derive a probability

distribution for hypothesis testing correlation.

The Cauchy-Schwarz inequality for vectors x = (x1, ..., xn) and y = (y1, ..., yn) says

that the square of their dot product is smaller than or equal to the product of their

lengths squared:

(x · y)2  ||x||2 ||y||2, where (43)

x · y =
nX

k=1

xk yk = dot product of x and y, and (44)

||x|| =
p

x · x =

 
nX

k=1

x2
k

!1/2

= length of x. (45)

The geometric interpretation of this is that the dot product of x and y equals the product

of the lengths of x and y times the cosine of the angle between them (in n-dimensional

space):

x · y = cos(✓) ||x|| ||y||. (46)

The generalization of the Cauchy-Schwarz inequality to probability distributions says

that the square of the expectation of a product is smaller than or equal to the product

of the expectation of squares:

(E[X Y ])2  E[X2] E[Y 2]. (47)

The fact that the absolute value of correlation is less than or equal to one follows by

applying the previous equation to Eq. 42 for correlation and using the fact the expectation

value of the squared Z-scores Z2
X and Z2

Y are both one.

E.4 Multiple Sampling and The Normal Distribution

Assuming that samples are all drawn independently from a probability distribution for a

single sample, the probability distribution for a multiple sample x = (x1, ...., xn) with n
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samples is the product of the distribution functions for each individual sample:

p(x1, ..., xn) = p(x1)p(x2)...p(xn) (48)

The mean and standard deviation of the average of the random variables X1, ..., Xn with

this distribution are

E [(X1 + ...+Xn)/n] = E[X1]

std ((X1 + ...+Xn)/n) =
1
p

n
std(X1). (49)

The Central Limit Theorem says that quite generally the distribution of the average

tends to a normal distribution, otherwise known as a bell curve, for large sample size n.

Even more strongly, whenever some very mild assumptions hold, the average of a large

number of di↵erent random e↵ects tends to look like a normal distribution. This is why

the normal distribution is often a reasonable model for background “noise” in statistical

estimation and hypothesis testing.

The normal distribution with mean µ and standard deviation � is the probability

distribution on the real line, with PDF

N(x;µ, �) =
1

�
p

2⇡
e�

(x�µ)2

2�2 . (50)

Since it is a PDF, the integral ofN(x;µ, �) over x is equal to 1. The integral of xN(x;µ, �)

is the mean µ and the integral of (x�µ)2N(x;µ, �) equals the variance �2. The standard

normal distribution is the special case when the mean vanishes and the standard deviation

is one.

The PDF for n independent samples from the above normal distribution is

N(x1, ..., xn;µ, �) =
�
2⇡�2

��n/2
e�

P
n

k=1(xk�µ)2

2�2 . (51)

In our derivation below of the distribution of sample correlations, we will use the fact

that the exponent in Eq. 51 is proportional to the squared length of (x̃1, ...., x̃n), where

x̃k is just xk shifted by µ.

The above is a special case of the multivariate normal distribution for an n-dimensional

vector x with mean µ and covariance ⌃ (a positive definite symmetric (n ⇥ n) matrix),

which has PDF

N(x;µ,⌃) = det (2⇡⌃)�1/2 e�(x�µ)T⌃�1(x�µ)/2. (52)
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E.5 Sample Statistics

Suppose we draw a multiple sample from some underlying population distribution whose

parameters are unknown. A sample statistic is a function of sample data which does not

depend on the population parameters. We say that the statistic is an estimator if it is

designed to allow us to make a guess at a parameter describing the underlying population.

One fundamental sample statistic is the sample mean. Given a sample x = (x1, ...xn)

from some underlying population distribution on some set of real numbers, the sample

mean is just the average

x̄ =
1

n

nX

k=1

xk. (53)

(54)

This is an unbiased estimator of the population mean, which means that the expectation

value over all samples of the sample mean equals the mean of the true population. Note

that the sample mean equals the expectation of the values xk, considered as a function of

a random variable k, which has equally weighted probability to take the values 1 through

k. We can think of this discrete distribution as a crude estimate of the population

distribution.

Another fundamental statistic is the uncorrected sample standard deviation:

sUx =

vuut 1

n

nX

k=1

(xk � x̄)2. (55)

The square of this is the uncorrected sample variance, which is a biased estimator of pop-

ulation variance because the expectation value of it over all samples equals the variance

of the population distribution times a bias factor of (n� 1)/n. Bessel’s correction to the

sample variance is to multiply the uncorrected sample variance by n/(n�1). The sample

variance with this correction is an unbiased estimate of the population variance.

The common definition of (corrected) sample standard deviation is the uncorrected

sample standard deviation time the square root of n/(n� 1). The corrected version gen-

erally comes much closer to being an unbiased estimator of population standard deviation

than the uncorrected sample standard deviation.

The (uncorrected) Z-score is the vector with mean zero and standard deviation one

obtained from x by subtracting the mean and dividing by (uncorrected) standard devia-

tion:

(Z(x))k = (xk � x̄)/sUx . (56)
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It is will be convenient for us to define the unit-length Z score to be normalized to have

length one:

Z̃(x) =
1
p

n
Z(x). (57)

In addition to having unit length, the dot product of Z̃(x) with the vector 1 = (1, 1, ..., 1)

vanishes. So Z̃(x) belongs to the (n � 2)-dimensional sphere, Sn�2
1

, consisting of vectors

of length one in the (n� 1)-dimensional subspace of Rn orthogonal to the vector 1.

Our final example of a sample statistic is the sample correlation between two data

vectors. In this paper, we are interested in the case where one vector is a vector of past

changes of a V-Dem indicator and the other is a vector of future stock returns. Let x and

y be vectors in Rn. The sample correlation is the dot product of the unit-length Z-scores

for x and y:

corr(x, y) = Z̃(x)
· Z̃(y) =

Pn
k=1(xk � ȳ)(yk � ȳ)pPn

k=1(xk � x̄)2
pPn

k=1(yk � ȳ)2
. (58)

Sample correlation is a biased estimator of population correlation, although the bias

decreases with the number of samples and vanishes in the case when population correla-

tion vanishes, which is the case we consider for hypothesis testing.

E.6 Hypothesis Testing of Correlation

Hypothesis testing of the correlation between n-dimensional samples xobs and yobs asks

the question: Is the sample correlation, cobs = corr(xobs, yobs), likely to represent a real

phenomenon or does it just amount to random noise? Our model of “random noise” is

the null hypothesis that the x vector is the given value15 xobs and that y consists of n

independent samples drawn from a normal distribution. The P-value of the observed

correlation is the probability that the correlation of a random sample is at least as big

as the observed correlation16. If that probability is very low, we say that we are justified

in rejecting the null hypothesis; i.e., we have good reason to doubt that the observation

was just a random e↵ect.

15 The distribution of correlation turns out to be independent of x
obs

. So it is the same whether we
fix x or allow x to be chosen randomly from some distribution.

16 What we have described above is a one-sided test appropriate for the case when we are asking if a
correlation is genuinely positive. In case we are interested in negative correlation, we would look at the
probability that the random sample had correlation smaller than the observed correlation. If the focus
of our test was the absolute value of the correlation, we would perform a two-sided test.
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E.6.1 Hypothesis Testing Background

It is now standard in the statistical literature to perform hypothesis testing of correlation

by calculating a transform of it called a t-statistic. When the null hypothesis is true, the t-

statistic is distributed by Student’s t-distribution. Introducing the t-statistic obscures the

meaning in terms of correlation itself. Below we will derive the distribution of correlation

under the null hypothesis directly by a simple geometric argument. We also prove that

the large n limit of this distribution is a normal distribution.

The earliest paper to present the distribution of sample correlation when the popu-

lation correlation vanishes is actually over a century old (Student 1908). The case when

population correlation is non-zero was dealt with in (Soper 1913)). R.A. Fisher subse-

quently published several papers that put the subject on a firm foundation (Fisher 1915,

Fisher 1921, Fisher 1924). In (Hotelling 1953), Hotelling states that “the best present-

day usage in dealing with correlation coe�cients is based on R.A. Fisher’s chapter on

the subject (Fisher 1950).” Hotelling simplifies and makes the theory more exact and

rigorous.

The distribution of sample correlation is now embedded inside of a collection of tools

that it is now standard to apply by rote. That machine is designed to handle not just

testing against the null hypothesis of zero population correlation, but also parameter

estimation of the value of population correlation, for which one need to use the distribu-

tion of sample correlation for non-zero population correlation. Reference (Hogben 1968)

explains that this distribution is a Q distribution and mentions that “J. N. K. Rao and

an unidentified person have pointed out that the distribution of [the correlation coe�-

cient squared] can be obtained as a special case of the conditional distribution of the

multiple correlation coe�cient for the multivariate normal (Rao 1965, p. 509).” See also

(Rao 2001). Exploring distributions for multiple correlation coe�cients is still a subject

of active research. We will have more to say about it when we discuss regression later in

the appendix.

E.6.2 Derivation of the Distribution of Correlation Under the Null Hypoth-

esis

We now present the promised simple geometric argument to derive the distribution of

sample correlation under the null hypothesis. We fix an n-dimension vector x and let y

be an n-dimensional vector whose components are independently sampled from a normal

distribution with some mean µY and standard deviation �Y .

The argument starts by observing that the unit-length Z-score Z̃(y) is uniformly dis-

tributed over the (n � 2)-sphere Sn�2
1

to which it belongs, i.e. the PDF for Z̃(y) is

independent of µY and �Y and equal to a constant on the sphere. (The constant is the

inverse of the volume of the sphere). This follows because, with the mean subtracted o↵,

60



the PDF in Eq. 51 is rotationally invariant17.

The dimensionality of the sphere to which the Z-score Z̃(y) belongs is the number

of pieces of information in y, other than the mean and standard deviation, which the

correlation does not depend on. This dimension is called the number of degrees of freedom,

⌫ = n� 2. (59)

Now we are ready to derive the distribution for the sample correlation. By rotational

invariance, we may fix Z̃(x) to the north pole. By Eq. 58, the correlation of x and y is

the cosine of the angle ✓ between y and the north pole, which we call c:

corr(x, y) = Z̃(x)
· Z̃(y) = cos(✓) = c. (60)

It is now useful to introduce generalized spherical coordinates on the sphere S⌫ 18.

The first coordinate is the latitude ✓, which goes from 0 (the north pole) to ⇡ (the south

pole). The other coordinates specify a point on the (n�3)-dimensional sphere at latitude

✓, which has radius sin(✓).

As a warm up exercise, let us show how to calculate the (⌫-dimensional) volume of

S⌫
s , the ⌫-sphere of radius s. This volume scales as the ⌫’th power of s:

Vol(S⌫
s) = s⌫ Vol(S⌫

1). (61)

We can calculate Vol(S⌫
1) using generalized spherical coordinates:

Vol(S⌫
1) =

Z ⇡

0

d✓Vol
⇣
S⌫�1
sin(✓)

⌘

= Vol(S⌫�1
1 )

Z ⇡

0

d✓ sin(✓)⌫�1

= Vol(S⌫�1
1 )

Z 1

c=�1

dc (1� c2)(⌫�2)/2. (62)

The last equality follows by changing variable to c = cos(✓), which introduces an extra

factor of

����
d✓

dc

���� =
����
dc

d✓

����
�1

= |sin(✓)|�1 = (1� c2)�1/2. (63)

Using generalized spherical coordinates as we did for the calculation of the volume

17 The discussion around Eq. 89 spells out the rotational invariance argument explicitly in the more
general context of group correlation.

18 We drop the subscript 1 on the sphere at this point since we are really just doing a calculation for
a general sphere and because we want to introduce another subscript for the radius of the sphere. The
radius defaults to one if not specified.
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of the sphere, we can calculate the expectation value of any function F of the sample

correlation c:

E[F (c)] =

Z 1

c=�1

dc F (c)


(1� c2)(⌫�2)/2Vol(S

⌫�1
1 )

Vol(S⌫
1)

�
. (64)

By the definition of marginal distribution (see Eq. 37 with y = c, l = 1, and x 2 Rk

replaced by Z̃(y)
2 S⌫), the PDF for c is

pdf(c) =
(1� c2)(⌫�2)/2

B(⌫/2, 1/2)
. (65)

Here we have written the normalization constant as a special case of the beta function,

B(a, b) =

Z 1

0

dt ta�1(1� t)b�1 = B(b, a). (66)

The correlation distribution has mean zero and standard deviation 1/
p

1 + ⌫.

E.6.3 Relation of Correlation to T-Statistic

As mentioned previously, it is standard in statistics to work with a transformation of the

correlation c called the t-statistic:

t =
p

⌫
c

p

1� c2
. (67)

The t-statistic ranges over the whole real line. It is easy to check that the distribution

Eq. 65 is equivalent to Student’s t-distribution with ⌫ degrees of freedom

pdf(t) =

�
⌫

⌫+t2

� ⌫+1
2

p

⌫B(⌫/2, 1/2)
. (68)

E.6.4 Large n Limit of Distribution of Correlation

Although the distribution of correlation is only non-zero on the interval [�1, 1], for large

n it looks like a bell curve concentrated tightly around the origin. If one rescales by the

standard deviation,
p

1 + ⌫, the limit is in fact a bell curve. This mean that, for large

n, P-values for correlation can be calculated as tail probabilities of a normal distribution

(of the sort given in Table 11 on p. 32). Specifically, we will now show that

Limn!1 Prob(c >
nStdOut
p

1 + ⌫
) =

Z 1

x=nStdOut

1
p

2⇡
e�x2/2. (69)

In words, the limit of the probability that the correlation with a random sample is

nStdOut or more standard deviations above zero equals the probability of choosing a
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number greater than nStdOut from a standard normal distribution.

To prove Eq. 69, let

M = ⌫ � 2 = n� 4, (70)

a =
p

M, and (71)

N =
1

B(⌫/2, 1/2)
(72)

(73)

Next, we change variables to x = a ⇤ c in the integral to calculate the following tail

probability of the correlation distribution:

Prob(c > nStdOut/a) = N

Z 1

c=nStdOut/a

dc
�
1� c2

�(⌫�2)/2
(74)

= (N /a)

Z 1

x=nStdOut

dx
�
1� x2/M

�M/2
. (75)

Direct calculation verifies that the limit for large n of N /a is 1/
p

2⇡. Using this and

the fact that the large M limit of (1� y/M)M is e�y shows that

Limn!1 Prob(c > nStdOut/a) =

Z 1

x=nStdOut

dx
1

p

2⇡
e

�x

2

2 . (76)

The right hand side of Eq. 76 equals the right hand side of Eq. 69. Our proof would

be done except that the left hand sides of these equations di↵er because 1/a is not the

standard deviation of the correlation distribution. The di↵erence between the two left

hand sides vanishes because it is the large n limit of

Prob(nStdout/
p

n� 1 < c < nStdout/
p

n� 4).

But this is smaller than (nStdout ⇤ N /a) times
⇣
1�

q
n�4
n�1

⌘
. The former factor limits

to nStdout/
p

2⇡ and the latter factor drop o↵ faster than 2/n for large n.

E.7 Group Correlation

In Section 5, we compare the result of total correlation with two types of in-group corre-

lation, where the grouping was either by country or by year. In this subsection, we give

the general definitions of the two types of in-group correlation and derive the distribu-

tion of those correlations under the null hypothesis that the Y variable is generated by

independent normal sampling.

Suppose X and Y are vector with components Xi, Yi and that the index set {i}ni=1

is divided into G di↵erent groups. Let G be the set of possible group labels; in the
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application of this paper, this would either be the set of all countries or the set of all

years being considered for a particular study. Let gi 2 G be the label for the group to

which the index i belongs. For each group label g, let Ig be the set of indices with group

label g, and ng be the number of element of Ig. We let X̄g, Ȳ g, std(Xg), std(Y g), and

corr(Xg, Y g) be the means, (uncorrected) standard deviations, and correlations of the

vectors Xg and Y g consisting of the components of X and Y which have label g.

The within-group variance of X (or Y ) is the average of the squared di↵erence of the

components of X (resp. Y ) from their group mean. This equals a weighted average of the

variance for each group separately. The within-group standard deviation is the square

root of the within-group variance:

varin(X) =
1

n

nX

i=1

(Xi � X̄g
i)2 =

X

g2G

wg
1

ng

X

i2I
g

(Xi � X̄g)2 (77)

=
X

g2G

wg var(X
g) (78)

stdin(X) =
p

varin(X) (79)

wg =
ng

n
. (80)

It is natural for us to define the within-group Z-score associated to X as the vector

obtained by subtracting o↵ the group means and dividing by the within-group standard-

deviation:

�
ZX

in

�
i

=
Xi � X̄g

i

stdin(X)
. (81)

Similarly to Eq. 57, we define the unit-length, within-group Z-score to be

Z̃X
in = n�1/2ZX

in. (82)

There are two variants of the definition of within-group correlation, depending on

whether the standard deviations we divide by are allowed to depend on the group or are

taken to be a common “tied” value common to all indices. The first definition, in which

the standard deviations are not tied, is just a weighted19 average of the correlations for

19 There is a variant of the definition of within-group correction using untied standard deviations that
is the simple (unweighted) average of the correlation for each group label. This variant equals the dot
product of “unit-length, within-group Z-scores with untied standard deviations”, defined as:

⇣
Z̃

X

in

⌘
untied

i

=
1

G

1/2

X

i

� X̄

gi

n

1/2
g

std(Xg)
. (83)
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each group label:

corrin(X, Y ) =
1

n

nX

i=1

✓
Xi � X̄g

std(Xg)

◆✓
Yi � Ȳ g

std(Y g)

◆
(84)

=
GX

g=1

wg corr(X
g, Y g). (85)

In the second definition, we take the common, tied standard deviations to be the within-

group standard deviations. This definition is equivalently defined as the dot product of

unit-length, within-group Z-scores:

corrstd�tied
in (X, Y ) =

nX

i=1

✓
Xi � X̄g

n1/2 stdin(X)

◆✓
Yi � Ȳ g

n1/2 stdin(Y )

◆
(86)

= Z̃X
in · Z̃Y

in. (87)

Both versions of within-group correlation always lie between minus one and one. For

the case when standard deviation are not tied, this is because within-group correlation

is a weighted average of numbers in this range. When the standard deviations are tied,

within-group correlation lies in this range because it is the dot product of unit vectors.

We now derive the distribution of within-group correlation when the vector X is fixed

and the components of Y are selected independently from a normal distribution. We first

look at the case of tied standard deviations and then look at the untied case.

E.7.1 Distribution for Within-Group Correlation with Tied Standard Devi-

ations Under the Null Hypothesis

For the case when standard deviations are tied, the derivation of the distribution of

within-group correlation is a direct generalization of the derivation in Section E.6 for

correlation not using group labels (which we have called total correlation in the main

text. The within-group correlation with tied standard deviations is again the dot product

of the Z-scores of X and Y , i.e. the cosine of the angle between two vectors on a unit

sphere. The only di↵erence is that now a subtraction of a separate mean for each group

label means that the vector Yi � Ȳ g
i belongs to the (n�G)-dimensional subspace of Rn

consisting of vectors whose mean for each group label vanishes. So the dimension of the

sphere to which within-group Z-scores belong, a.k.a. the number of degrees of freedom,

now equals

⌫in = n�G� 1. (88)
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The demonstration that the correlation distribution has the form Eq. 65 and has large n

limit Eq. 69 goes through as before.

In footnote 17, we promised that we would spell out explicitly here the argument that

the Z-score for Y has uniform density. We continue to assume that the components of

Y are picked independently from a normal distribution with group-independent standard

deviation � and mean µ (although we could allow the mean to depend on group as well).

A simple calculation shows that the PDF for Y only depends on the group means and

the within-group standard deviation:

Prob(Y ) = (2⇡�)�n/2 e�Q/(2�2),where

Q = n stdin(Y )2(Z̃Y
in · Z̃

Y
in) +

X

g

ng

�
Ȳ g

� µ
�2

= n stdin(Y )2 +
X

g

ng

�
Ȳ g

� µ
�2

. (89)

The marginal distribution for Z̃Y
in is constant since Prob(Y ) does not depend on it.

E.7.2 Distribution for Within-Group Correlation with Untied Standard De-

viations Under the Null Hypothesis

As we saw in Eq. 84, the within-group correlation when the standard deviations are not

tied is just a weighted average of the correlation for each group label,

cin =
X

wgcg (90)

cg = corr(Xg, Y g). (91)

There is no simple closed form solution for the distribution of this correlation under the

null hypothesis. However, things do simplify because the cg are independent random vari-

ables. For example, the expectation value of cin vanishes because it equals the weighted

average of the expectation values of the cg, which are all zero under the null hypothesis.

Since the cg are independent, the variance of cin is

var(cin) =
X

g2G

wg
2

✓
1

ng � 1

◆
. (92)

We may write this in the form

var(cin) =
1

1 + ⌫eff
, (93)
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where the e↵ective number of degrees of freedom, ⌫eff , is

⌫eff =

"
X

g2G

wg
2

✓
1

ng � 1

◆#�1

� 1. (94)

If the ng are independent of g, then ⌫eff equals n � G � 1, the same form as found for

tied standard deviations in Eq. 88. Note that this di↵ers from the naive count n � 2G

obtained by multiplying the number of groups by the number of degrees of freedom per

group.

There are two separate reasons that the distribution (of within-group correlation with

untied standard deviations) is approximately normally distributed for large n. The first

reason is that the central limit theorem applies when the number of group labels, G, is

large to tell us that cin, which is an average of G independent variables, is approximately

normal. The second reason is that the cg are approximately normal for large ng, and

the weighted average of normal distributions is normal. Thus Eq. 69 holds with c and ⌫

replaced by cin and ⌫eff .

E.8 Regression

In this subsection of this appendix, we will discuss the mathematics of (ordinary un-

constrained) linear regression, with a focus on significance testing. We explain how four

di↵erent measures of a regression – the multiple correlation coe�cient, R-squared, ad-

justed R-squared and F statistics – fit together in a hypothesis testing framework.

E.8.1 Formulas for Regression

Let us consider least squares linear regression for a data set, {Yi, Xi
1, ....Xi

k
}

n
i=1, of sam-

ples of a variable Y , called the dependent variable, and variables X1, ..., Xk, called the

independent, regressor, predictor, or explanatory variables.

The regression model is the best linear estimate of Y given X:

Ŷ = ↵ + �1X
1 + ...+ �kX

k, (95)

where ↵ and �1, ..., �k are constants. The model is “best” in the sense that it minimizes

the sum of squared errors,

SSE =
nX

i=1

(Yi � Ŷi)
2, (96)

Ŷi = ↵ +Xi
1�1 + ...+Xi

l�l. (97)

67



The term alpha can be thought of as the constant associated with a regressor that has

constant value one. The minimization with respect to ↵ is easy to solve for and allows

us to rewrite the model as

Ŷi = Ȳ + (Xi
1
� X̄1)�1 + ...+ (Xi

k
� X̄k)�k. (98)

We identify the variable names Y , X l, and Ŷ with the n-dimensional column vectors

of their instances. The n ⇥ k matrix with entries Xi
l will be denoted X and the k-

dimensional column vector of coe�cients will be written as �. We also let X̃ be the

matrix whose columns are the columns of X with their means subtracted. With these

definitions, Eq. 95 and Eq. 98 become vector equations using matrix multiplication:

Ŷ = ↵1+X� = Ȳ 1+ X̃�. (99)

(Recall the 1 is the column vector whose components are all one.)

The estimation error vector is the di↵erence between Y and its estimate:

e = Y � Ŷ . (100)

The sum of squared errors, Eq. 96, equals the squared length of the error vector.

SSE = ||e||2 =
nX

i=1

e2i . (101)

An estimate of the variance of the error is

MSE =
SSE

n� k � 1
. (102)

We have divided by n�k�1 because that is the number which makes MSE an unbiased

estimate of population error variance. Another convention for defining the mean squared

error takes it to be the naive average of the squared errors. We will refer to this as the

uncorrected mean squared error,

MSEU =
SSE

n
. (103)

A little calculus with matrices shows that the solution for � is

� =
⇣
X̃T X̃

⌘�1

X̃TY. (104)

The Y vector is the sum of three pieces which are orthogonal to each other:

Y = Ȳ 1 + X̃� + e. (105)
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The R-squared of the regression is the fraction of the the sum of the squares of the

deviations of the components of Y from its mean which is “predicted” by the model.

That is, it is the ratio of the sum of squares of values from regression (SSR) to the total

sum of squares (SST):

R2 =
SSR

SST
, (106)

SSR = ||Ŷ � Ȳ ||

2, (107)

SST = ||Y � Ȳ ||

2. (108)

Since the decomposition in Eq. 105 is orthogonal we have

SST = ||Y � Ȳ ||

2 = ||Y � Ŷ ||

2 + ||Ŷ � Ȳ ||

2 = SSE + SSR. (109)

So we may rewrite R-squared as:

R2 = 1�
SSE

SST
. (110)

E.8.2 For Simple Regression, R-squared is Correlation Squared

Simple regression is the case when there is only one independent variable, i.e. k = 1. In

that case, the R-squared of the regression equals the square of the correlation of X and

Y . This follows as a special case of the demonstration we give in a moment for multiple

regression (k � 1).

A direct proof for simple regression follows from the fact that, in that case, the matrix

X is just a column vector, and XTY equals the dot product of X and Y . The regression

model still has the form in Eq. 99, but now X̃ is a column vector. The regression

coe�cient � is

� =
⇣
X̃T X̃

⌘�1

X̃TY =
X̃T Ỹ

||X̃||

2
=

||Ỹ ||

||X̃||

(Z̃(x)
· Z̃(y)) (111)

=
sUy
sUx

corr(X, Y ). (112)

In this case, R-squared can be written in several equivalent ways:

R2 =
||Ŷ � Ȳ ||

2

||Y � Ȳ ||

2
= �2 ||X � X̄||

2

||Y � Ȳ ||

2
= corr(X, Y )2. (113)

69



E.8.3 For Multiple Regression, R-squared Is Square of Multiple Correlation

Coe�cient

Themultiple correlation coe�cient is the correlation between the Y data and the estimate

Ŷ :

r = multiple correlation coe�cient = corr(Y, Ŷ ). (114)

The multiple correlation coe�cient is the square root of R-squared, so R-squared is

sometimes called the “squared multiple correlation coe�cient”. This follows because

r =
(Y � Ȳ ) · (Ŷ � Ȳ )

||Y � Ȳ || ||Ŷ � Ȳ ||

=
(Ŷ � Ȳ ) · (Ŷ � Ȳ )

||Y � Ȳ || ||Ŷ � Ȳ ||

=
||Ŷ � Ȳ ||

||Y � Ȳ ||

=
p

R2. (115)

The second equality follows because the error e = Y � Ŷ is orthogonal to Ŷ � Ȳ .

Note that the multiple correlation coe�cient is always positive. For the case of simple

regression, Ŷ � Ȳ is a multiple of X, and so the multiple correlation coe�cient is equal

to the absolute value of the correlation between Y and X.

E.8.4 Split of Rn into Three Orthogonal Pieces: constant vectors, linear com-

binations of the independent variables, and estimation error vectors

That any vector Y in Rn can be uniquely decomposed as a sum of three orthogonal pieces

as in Eq. 105 means that that Rn is the orthogonal direct sum of three pieces: the vectors

proportional to the vector 1 of all ones, the space of all linear combination of the X̃ l, and

the space E of all possible error vectors. E is the subspace of Rn consisting of all vectors

orthogonal to the sum of the other two spaces. This decomposition is denoted as follows:

Rn = Span({1})� Span({X̃ l
})� E. (116)

The matrices for the orthogonal projection onto the first two pieces in Eq. 116 are

⇧Span({1}) = n�1 11T , and (117)

⇧Span({X̃l}) = X̃
⇣
X̃T X̃

⌘�1

X̃T . (118)

. (119)

The matrix for orthogonal projection onto the third piece is just the identity matrix

minus the other two projection matrices.

For simple regression, we saw in Eq. 113 that the R-squared statistic equals the square

of the correlation of the independent and dependent data, which equal the square of the

dot product of their unit-length Z-scores. For multivariable regression in general, the
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R-squared equals the length squared of the projection of the unit-length Z-score for the

dependent variable onto the space spanned by the mean subtracted instance vectors of

the independent variables. This translates into the following equation:

R2 = ||⇧Span({X̃l})Z̃
(y)
||

2. (120)

E.8.5 Distribution of R-squared Under the Null Hypothesis

The description we have just given of R-squared is a mouthful, but it will allow us to easily

derive the the distribution of R-squared under the null hypothesis that the components

of the vector Y are sampled independently from a normal distribution with some mean µ

and standard deviation �. We now present this derivation in a way generalizing how we

derived the distribution of correlation in Appendix E.6.2. The distribution we find only

depends on the number of independent variables and instances.

We start by letting r be the square root of R-squared, i.e. the multiple correlation

coe�cient. For simple regression, this is just the absolute value of the correlation of X

and Y . In general, r is the norm of the projection of Z̃(y) onto the space spanned by

{X̃ l
}. So the distribution of r can be deduced from the distribution of Z̃(y), which we saw

in Appendix E.6.2 is the uniform distribution on Sn�2
1

, the (n� 2)-dimensional sphere of

unit-vectors in Rn which are orthogonal to the vector of all ones.

Since the distribution is rotationally invariant, we are free to apply a rotation that

rotates the subspace spanned by {X̃ l
} into the subspace Rk of Rn consisting of vectors

whose last n � k components vanish. This step is a generalization of the step in Ap-

pendix E.6 where we rotated Z̃(x) to the north pole. At the same time, we rotate the

space of vectors orthogonal to 1 into Rn�1.

We now define a useful variant of spherical coordinates for the vector Z̃(y). Let v be

the unit vector in the direction of Ŷ � Ȳ , which we can now say is the direction of the

projection of Z̃(y) onto Rk. Also let w be the unit vector in the direction of e, which

is now the direction of the projection of Z̃(y) onto of the copy of Rn�k�1 consisting of

vectors in Rn�1 whose first k coordinates vanish. Then

Z̃(y) = r v +
p

1� r2 w. (121)

The PDF for r is proportional to the (n � 3)-dimensional volume of the set of Z̃(y)

which have the given r, times a change of variables factor dependent on r. The volume

of the space for fixed r is the product of: (i) the volume of the sphere in Rk of radius r to

which r v belongs and (ii) the volume of the sphere in Rn�k�1 of radius
p

1� r2 to which
p

1� r2 w belongs. This product is proportional to rk�1 times
�p

1� r2
�n�2�k

. For those

comfortable with change of variables in multivariable calculate, the change of variables

factor can be calculated by computing the appropriate Jacobian determinant. The result
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is (1� r2)�1/2, the direct generalization of the factor in Eq. 63. As we said, the PDF for

r is proportional to the product of the volume factor and the change of variables factor

we just calculated:

pdf(r) / rk�1
⇣
p

1� r2
⌘n�3�k

. (122)

The PDF for R2 follows by changing variable using20 R2 = r2 and including an overall

factor so that the PDF integrates to one:

pdf(R2) =
(R2)�1+k/2(1�R2)(n�3�k)/2

B(k/2, (n� 1� k)/2)
, (123)

where B is the beta function defined in Eq. 66.

E.8.6 Adjusted R-squared and Its Statistics Under the Null Hypothesis

The mean and variance of R-squared under the null hypothesis can easily be calculated

from the distribution Eq. 123:

mean(R2) =
k

(n� 1)
, (124)

var(R2) =
2k(n� 1� k)

(n+ 1)(n� 1)2
. (125)

So the mean of R-squared increases linearly with the number of independent variables.

This is a precise version of the statement made in Section 6.2 that the R-squared values

become large when many independent variables are included. A common practice to

correct for this is to report an adjusted value for R-squared which correctly accounts

for the fact that the error vector Y � Ŷ belong to the n � 1 � k dimensional space E

of possible error vectors, and the deviation of Y from the mean, Y � Ȳ , belongs to the

n� 1 dimensional space of noise vectors with mean zero. R2 may be written in terms of

uncorrected mean squares as

1�R2 =
MSEU

MSTU
=

||Y � Ŷ ||

2/n

||Y � Ȳ ||

2/n
. (126)

Adjusted R-squared can be written in term of corrected mean squares as

1�R2
adj =

MSE

MST
=

||Y � Ŷ ||

2/(n� 1� k)

||Y � Ȳ ||

2/(n� 1)
. (127)

20 Note that R2 is the name of a variable, whereas r2 is the square of the variable r.
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The formula transforming R-squared to adjusted R-squared is

R2
adj = 1� (1�R2)

✓
n� 1

n� 1� k

◆
. (128)

This can be written in a way that make it manifest that adjusted R-squared has mean

zero:

R2
adj =

✓
n� 1

n� 1� k

◆�
R2

�mean(R2)
�
. (129)

The fact that the mean is zero is the precise version of the statement made in Section 6.2

that the adjusted R-squared only gets larger when new predictors are added if they reduce

the squared error by more than what would be expected by chance.

Using the mean and variance of R-squared in Eq. 124, we find that the adjusted

R-squared has mean zero and variance

var(R2
adj) =

2k

(n+ 1)(n� k � 1)
. (130)

E.8.7 Relation of R-squared to F-statistic

For completeness we now show that the distribution for R2, given by Eq. 123, is equivalent

to the F-distribution of the F-statistic. The F-statistic is the statistic commonly used for

hypothesis testing the overall significance of a regression, despite the fact that it is the

R-squared statistic that is the one usually reported to measure how well the regression

explains the data.

The F-statistic is the ratio of the (corrected) mean square of values from regression

to the (corrected) mean square error,

f =
MSR

MSE
=

||Ŷ � Ȳ ||

2/k

||Y � Ŷ ||

2/(n� k � 1)
(131)

=
R2

1�R2

n� 1� k

k
(132)

=
n� 1

k(1�R2
adj)

�

n� 1� k

k
. (133)

Under the null hypothesis, the probability distribution for the F-statistic is the F
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distribution with parameters (k, n� 1� k):

Prob(f) =
⌫2

⌫2/2(f⌫1)⌫1/2(f⌫1 + ⌫2)
1
2 (�⌫1�⌫2)

fB
�
⌫1
2 ,

⌫2
2

�

=
(fk)k/2(�k + n� 1)

1
2 (�k+n�1)((f � 1)k + n� 1)

1�n

2

fB
�
k
2 ,

1
2(�k + n� 1)

� , where (134)

⌫1 = k, (135)

⌫2 = n� 1� k. (136)

(137)

This has mean and variance

mean(f) =
⌫2

⌫2 � 2
, and (138)

var(f) =
2⌫2

2(⌫1 + ⌫2 � 2)

⌫1(⌫2 � 4)(⌫2 � 2)2
. (139)

The distribution for f can be derived simply from the distribution for R-squared

(Eq. 123) by the change of variables Eq. 132. By contrast, the standard derivation of

the distribution for f begins by noting that the squared lengths in the numerator and

denominator in Eq. 131 are independent random variables and each is distributed as a

chi-squared distribution (the distribution of a sum of squares of independent standard

normal variables). Our derivation seems simpler to us and highlights the role of multiple

correlation, whereas the standard derivation has the advantage that it can be more easily

generalized to the case when population R-squared is non-zero, which we will spell out

in Appdendix E.9.5.

E.9 Adjusted R-Squared and the Population Model for Regres-

sion

E.9.1 Adjusted R-Squared is an Almost Unbiased Estimator of Population

R-Squared

We introduce below a population model in which some fraction of the variation of Y is

“truly explained” by regression. This fraction is called the population R-squared, denoted

⇢2. The null hypothesis is the special case when ⇢2 vanishes so that no fraction of the

deviation of Y from its mean is “truly explained” by regression. As we have seen, adjusted

R-squared has mean zero when the null hypothesis is true, correcting for the problematic

fact that R-squared has positive expectation value because it is positive for any sample21.

Reference (Yin & Fan 2001) reviews the literature on many alternative formulas for

21 Technically, R-squared vanishes on a set of Y with probability zero.
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adjusted R-squared that have been proposed over many decades. The formula we use in

this paper is the one proposed by Wherry in (Wherry 1931), which Yin and Fan point

out is “the most widely used”, although they conclude that it is “probably not the most

e↵ective analytical formula for estimating ⇢2.” In his 1931 paper, Wherry claims that: “It

has been demonstrated that the new Wherry formula, both by a least squares criterion

and by actual application, is more nearly true than [ a previous e↵ort at adjusting R-

squared]”.

Yin and Fan systematically compare six di↵erent formulas under a range of conditions

(various n, k, ⇢2, and the degree of dependence between regressors22) to see which one is

the most “operationally unbiased” estimator of ⇢2. For each condition, they calculate an

approximation to the expectation value of population R-squared based on 500 random

trials23 from the population. They follow the convention by which “researchers have

operationally defined an unbiased estimate as having means based on the 500 replications

to be within .01 of the corresponding population parameters” (Yin & Fan 2001, p. 214).

A formula for R-squared can fail to be operationally unbiased by this definition either

because its expectation value (the limit of the mean as the number of trials becomes

infinite) is biased or because its standard deviation is too high (so that the mean based

on 500 trials is substantially di↵erent from the full expectation value). They find that all

6 formulas are operationally unbiased under the majority of conditions, with the Wherry

formula being unbiased 77% of the time.

E.9.2 Population Model and Population R-squared

The population model for regression specifies that the n-dimensional vector Y is a random

variable equal to a constant, plus a linear combination of the columns of an n⇥k regressor

matrix X plus an error vector. We will restrict ourselves to a so-called “fixed-e↵ects”

model in which X is constant, as opposed to a “random-e↵ects” model in which the

matrix X is a random variable. Population R-squared is the fraction of the variance of

Y explained as a linear combination of the columns of X.

The parameters of the model in addition to X are a constant µ, a k ⇥ 1 vector � of

“population regression coe�cients”, and a noise scale �. The model for Y is

Y = µ1+ X̃� + ✏. (140)

In order for the constant µ to have an interpretation as a mean, we have used the matrix

22 We will derive the population distribution of adjusted R-squared below. The exact distribution only
depends on n, k, and ⇢

2. It does not depend on the matrix X̃, as long as it is invertible. The modest
dependence on the intercorrelation of independent variables that Yin and Fan report presumably comes
about due to numerical approximation.

23 A single random trial, or “replication” in the wording of Yin and Fan, is a sampling of the n-
dimensional vector Y from the population distribution.

75



X̃, which equals the matrix X with the mean subtracted from each column. The “noise”

vector ✏ is an n⇥ 1 vector whose components are independent and identically distributed

by a normal distribution with mean zero and standard deviation �. Equivalently, we

could say that Y is distributed as a multivariate normal distribution with mean vector

µ1+ X̃� and covariance matrix equal to �2 time the identity matrix.

We define the population regression estimate to be the first two terms of Eq. 140,

Ŷpop = µ1+ X̃�. (141)

The population version of the sum of squares of values from the regression defined in

Eq. 107 is

SSRpop = ||Ŷpop � Ȳpop||
2 = ||X̃�||2. (142)

The population total sum of squares is the expectation value of the length squared of Y

minus its mean, Ȳ . It equals the population sum of squares of values from regression plus

the sum of squares from noise,

SSTpop = E(||Y � Ȳ ||

2) = SSRpop + SSEpop, (143)

SSEpop = E(||✏� ✏̄||2) = (n� 1)�2. (144)

Now we can define the population R-squared,

⇢2 = R2
pop =

SSRpop

SSTpop

=
||X̃�||2

||X̃�||2 + (n� 1)�2
. (145)

E.9.3 Refined Population Model and Population Multiple Correlation

In the literature, population R-squared is sometimes called a square of the population

multiple correlation coe�cient, but it rarely if ever seems to be spelled out what that

means in terms of a precise population model. For completeness we explain one way to

spell this out in the subsubsection, although we shall not make use of this formulation

elsewhere in this paper.

The model now is for a scalar random variable Y s, which takes a form similar the

population model in Eq. 140 for the column vector Y . The parameters of the model are

the same as before: an n⇥ k matrix X; a constant µ; a k⇥ 1 vector �; and a noise scale

�. We let X̃s be a random variable which is uniformly distributed on the rows of the

matrix X̃. In other words, the value of X̃s has a 1/n probability of equalling the i’th row

of X̃. The model for Y s is

Y s = µ+ X̃s� + ✏s, (146)
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where ✏s is distributed normally (and independently from Xs) with mean 0 and standard

deviation �.

The model parameters µ and � are the choice of µ⇤ and �⇤ that mininimize the

expectatation value of the squared error (Y s
� Ŷ s)2 in the linear model Ŷ s = µ⇤+ X̃S�⇤.

So the scalar version of the population regression estimate (in Eq. 141) is

Ŷ s = µ+ X̃s�, (147)

This is the least squares estimate for regression over the whole population.

It is easy to calculate the following:

E(X̃s) = 0, (148)

E(Y s) = E(Ŷ s) = µ, (149)

var(Ŷ s) = E
⇣
(X̃s�)2

⌘
=

1

n
||X̃�||2, (150)

var(Y s) = E
⇣
(X̃s� + ✏)2

⌘
=

1

n
||X̃�||2 + �2, (151)

cov(Y s, Ŷ s) = E
⇣
(X̃s�)(X̃s� + ✏)

⌘
=

1

n
||X̃�||2. (152)

Finally, we may calculate the population multiple correlation coe�cient,

⇢s = corr(Y s, Ŷ s) =

 
cov(Y s, Ŷ s)2

var(Y s) var(Ŷ s)

!1/2

=

 
1
n
||X̃�||2

1
n
||X̃�||2 + �2

!1/2

(153)

So the population R-squared is:

(⇢s)2 =
||X̃�||2

||X̃�||2 + n�2
. (154)

Note that this formula for population R-squared di↵ers from Eq. 145 in that the factor

n� 1 appearing in the denominator is replaced by n.

E.9.4 “Derivation” of Formula for Adjusted R-Squared

In this subsection we shall derive the formula for adjusted R-Squared in a way that makes

manifest that it is an almost unbiased estimator of the square of the population multiple

correlation coe�cient.

The R-squared for regression of Y on X produces a biased estimate of ⇢2 because the

least square projection of Y onto the space spanned by the columns of X̃ includes the

projection of the noise vector. To spell this out, we recall that the orthogonal decompo-
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sition in Eq. 116 allows us to write any vector Y as a sum of three orthogonal pieces: a

constant, a combination of the columns of X̃, and an error term:

Y = Ȳ 1+ (Ŷ � Ȳ 1) + e. (155)

The error term e is the projection of ✏ onto the error space E, which is the space orthog-

onal to constant vectors and the columns of X̃. The constant Ȳ is the average of the

components of Y ,

Ȳ = µ+ X̄� + ✏̄, (156)

where ✏̄ is the average of the components of ✏ and X̄ is the 1 ⇥ k vector of averages of

the columns of X.

The deviation of the regression estimate Ŷ from its mean is

Ŷ � Ȳ = X̃� + p, (157)

where p is the projection of ✏ onto the span of the columns of X̃. The regression sum of

squares is the squared length Ŷ � Ȳ ,

SSR = ||X̃�||2 + ||p||2 + 2p · (X̃�). (158)

The expectation under the population distribution of the cross term vanishes and the

expectation of ||p||2 is the dimension k of the subspace to which it belong times the

variance for each component of the noise. So

E(SSR) = ||X̃�||2 + k�2. (159)

We have already given a formula (Eq. 143) for the expectation value of the total sum

of squares when it went under the name of population total sum of squares,

E(SST ) = E(||Y � Ȳ ||

2) = ||X̃�||2 + (n� 1)�2. (160)

The expectation of the sum of squared errors equal �2 times the dimensional of the

error space,

E(SSE) = E(SST )� E(SSR) = (n� 1� k)�2. (161)

Now we are ready to encapsulate in one line why the expectation value of the Wherry
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formula for adjusted R-squared is approximated equality to the population R-squared:

E(R2
adj) = E(1�

MSE

MST
) ⇡ 1�

E(MSE)

E(MST )
= 1�

�2

||X̃�||2/(n� 1) + �2
= ⇢2. (162)

The approximation used is that the expectation value of the ratio MSE/MST is approx-

imately equal to the ratio of the expectation values E(MSE)/E(MST ).

E.9.5 Distribution of Adjusted R-squared for General Population Distribu-

tion

We now describe the distribution of adjusted R-squared for a general regression popula-

tion distribution. To do so, we will first go through the derivation of how the F-statistic

is distributed as an F-distribution.

We use the orthogonal decomposition (Eq. 116) of Rn as an orthogonal sum of three

spaces of dimensions 1, ⌫1 = k, and ⌫2 = n � k � 1. This determines a breakup of Y as

the some of three pieces, which are distributed independently: Ȳ 1, Ŷ � Ȳ , and e. For

the distribution of the first component, we can ignore the vector 1 and just provide a

distribution for the scalar Ȳ . To write down the distribution of e, we identify the ⌫2-

dimensional space E to which it belongs with R⌫2 via a norm preserving, invertible linear

map from R⌫2 to E. Such a linear map takes the form multiplication by an n⇥ ⌫2 matrix

whose columns are an orthonormal basis of E. Similarly, to write down the distribution

of Ŷ � Ȳ we need to identify the k-dimensional Span({X̃ l
}) with Rk. Such a map is

determined by an orthonormal basis of the latter space. Using the Gramm-Schmidt

orthonormalization process, we can choose a basis so that the first basis vector is a unit

vector pointing in the direction of X̃�. Then the vector X̃� is identified with the vector

||X̃�||e1,k, where e1,k is the vector in Rk whose components all vanish except for the first,

which is one.

Using the above identification, the three pieces of Y are distributed as follows:

Ȳ ⇠ N(µ, �2), (163)

Ŷ � Ȳ ⇠ N(||X̃�||e1,k, �
2Ik), (164)

e ⇠ N(0n�k�1, �
2In�k�1). (165)

Here, the notation

X ⇠ N(v, C) (166)

indicates that the random variable X is distributed by a normal distribution with mean

vector v and covariance matrix C; 0m denotes the m-dimensional vector whose compo-

nents all vanish; and Im denotes the m⇥m identity matrix.
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It is helpful to introduce the population signal-to-noise ratio,

� =
||X̃�||2

�2
. (167)

The population R-squared and the signal-to-noise ratio are related by

⇢2 =
�

(n� 1) + �
, (168)

� = (n� 1)
⇢2

1� ⇢2
. (169)

We introduce the following rescaled vectors which are distributed normally with iden-

tity covariance:

Ŷ � Ȳ

�
⇠ N(�1/2e1,k, Ik), (170)

e

�
⇠ N(0⌫2 , I⌫2). (171)

The norm squared of the second vector is distributed as an ordinary chi-squared distribu-

tion, and that of the first vector is distributed by a non-central chi-squared distribution.

The ordinary chi-squared distribution with ⌫ degrees of freedom, denoted �2
⌫ , is a

distribution on the positive real line of a variable which equals the sum of the squares of

⌫ independent random variables distributed by the standard normal distribution. Equiv-

alently, it is the distribution of the length squared of a vector which is distributed by

N(0⌫ , I⌫). A formula for the PDF of this distribution is easily derived from the formula

for a normal distribution or looked up in many standard references.

The non-central chi-squared distribution, �2
⌫(�), with ⌫ degrees of freedom and non-

centrality parameter �, is the distribution of the length squared of a vector X distributed

as N(µ, I⌫), where the length squared of µ is equal to �. Equivalently, X is distributed as

the sum of squares of independent normally distributed random variables X1, ..., Xk with

unit variance and means µ1, ..., µ⌫ whose squares sum to �. The ordinary chi-squared

distribution is the special case when the non-centrality parameter vanishes, �2
⌫ = �2

⌫(0).

Let SSR1 and SSE1 be the norm-squared of the vectors in Eq. 170. Then

SSR1 = SSR/�2 =
���
��� Ŷ�Ȳ

�

���
���
2

⇠ �2
⌫1
(�),

SSE1 = SSE/�2 =
���� e

�

����2
⇠ �2

⌫2
(0).

(172)

The F-statistic defined in Eq. 131 equals the ratio of SSR1 to SSE1 time the normal-

ization factor ⌫2/⌫1. By definition, the non-central F-distribution with dimensions ⌫1, ⌫2,
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and non-centrality parameter � is the distribution of a ratio such as this:

f =
SSR1/⌫1
SSE1/⌫2

⇠ non-central F (⌫1, ⌫2,�). (173)

The mean and variance of the F -statistic under the population distribution are straight-

forward to calculate in general. Rather than go through the derivation here, we present

in Figure 5 a Mathematica (Wolfram Research Inc. 2014) notebook which calculates the

mean in a single line of code. The result is

E[f ] =
⌫2

⌫2 � 2

✓
1 +

�

⌫1

◆
. (174)

Let us bring out focus back to the adjusted R-square statistic. We can now say that

it is distributed as a transformation of the non-central F-distribution of the F-statistic

by the change of variables:

R2
adj =

⌫1(f � 1)

⌫1f + ⌫2
= 1�

⌫1 + ⌫2
⌫1f + ⌫2

. (175)

We know of no closed form solution for the mean of adjusted R-squared in general, but

in Figure 5 we show how the mean and standard deviation of adjusted R-squared for

particular parameter values can be calculated in just a few lines of Mathematica code.

The parameter values we pick have relevance to understanding our results for confidence

intervals for the positive regression considered in the body of the paper.

The examples in Figure 5 illustrate that that adjusted R-squared is indeed approxi-

mately unbiased, i.e. the mean of adjusted R-squared is close to the population R-squared.

Also, as one would expect, the standard deviation decreases as the number of data points

increases. When ⇢2 = 0.15, k = 5, and n increases from 10 to 700 as in the first two rows

of the table in the figure, the standard deviation decreases as n�0.7, i.e. a little faster than

the inverse square root of n. Further, the standard deviation increases very slowly with

the number of regressors k. Not shown is that the standard deviation is almost constant

as k varies for ⌫2 held fixed. Contrast all this with the exact formula for the dependence

on n and k when ⇢2 = 0, which is given in Equation 130.

E.10 Confidence Intervals for Adjusted R-squared

The distribution of adjusted R-squared for the regression model depends on the sample

size n, the number of regressors k, and the population R-squared, ⇢2. Suppose we observe

a value, R2
adj,obs, of adjusted R-squared for some regression data. One thing we can do

is to compute the P-value for significance testing the observed R-squared against the

null hypothesis, which is the special case of our population model when ⇢2 vanishes.
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Expectation values of the F-statistic in general:
In[1]:= Assuming[ ν2 > 2, Simplify[Mean[NoncentralFRatioDistribution[ν1, ν2, λ]]]]

Out[1]=
(λ + ν1) ν2

ν1 (-2 + ν2)

Population mean and standard deviation for population R-squared=0.4 
and various ν1 and ν2:

In[2]:= ν1 = k;
ν2 = n - k - 1;
λ = (ν1 + ν2) * ρ^2 / (1 - ρ^2);
dist = NoncentralFRatioDistribution[ν1, ν2, λ];
R2adj = ν1 * (f - 1) / (ν1 * f + ν2);
mean[R2adj] = Assuming[{ν2 > 2}, Expectation[R2adj, f 0 dist ]];
meanSquare[R2adj] = Assuming[{ν2 > 2}, Expectation[R2adj ^2, f 0 dist ]];
var[R2adj] = meanSquare[R2adj] - mean[R2adj]^2;
std[R2adj] = Sqrt[var[R2adj]];
row = {ρ^2, n, k, N[mean[R2adj]], N[std[R2adj]]};
ρ = Sqrt[0.15];
Grid[{{"ρ2", "n", "k", "mean R2adj", "std R2adj"},
row /. {k → 5, n → 10}, row /. {k → 5, n → 700},
row /. {k → 20, n → 700}, row /. {k → 158, n → 700}}, Frame → All]

Out[13]=

ρ2 n k mean R2adj std R2adj
0.15 10 5 0.128452 0.458326
0.15 700 5 0.14969 0.024201
0.15 700 20 0.14969 0.0251321
0.15 700 158 0.14969 0.03426

Figure 5: Mathematica notebook which calculates:
the expectation value of F-statistic for generic regression population parameters, and
examples of the mean and standard deviation of sample adjusted R-squared for population
R-squared 0.15.

Another thing we can do is estimate the population R-squared value based on the observed

adjusted R-squared. R2
adj,obs itself is a reasonable choice of estimate of ⇢2 since adjusted

R-squared is approximately unbiased. However, there are problems with this choice. For

example, R2
adj,obs might be negative, whereas ⇢2 is always non-negative.

One approach to getting some feel for a range of possible values for the popula-

tion parameter, ⇢2, which may have generated the observed value, R2
adj,obs, is to use the

Neyman-Pearson theory of confidence intervals (Neyman 1937). This approach is stan-

dard when estimating simple parameters like individual regression coe�cients, but is not

so standard when it comes to estimating population R-squared. In the paper “Correct

Confidence Intervals for Various Regression E↵ect Sizes and Parameters: The Importance

of Noncentral Distributions in Computing Intervals” (Smithson 2001), Smithson states

that “Until recently, these techniques have not been widely available due to their neglect

in popular statistical textbooks and software.” These techniques are now more accessible
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because confidence intervals can now be computed both theoretically and by simulation.

See for example (Young 2010).

Given a significance level ↵ between 0 and 1 and an observed value R2
adj,obs, the (two-

sided) confidence interval for ⇢2 at confidence level 100 ⇤ (1� ↵)% is the range of values

of ⇢2 for which R2
adj,obs is in the middle of the probability distribution in the sense that

the cumulative probability below R2
adj,obs is in the range [↵/2, 1� ↵/2]. In formulas, this

condition reads

P (R2
adj < R2

adj,obs; k, n, ⇢2) >= ↵/2, and (176)

P (R2
adj > R2

adj,obs; k, n, ⇢2) >= ↵/2. (177)

The confidence interval is:

CI(k, n,R2
adj,obs,↵) = [⇢2lo, ⇢

2
hi], (178)

⇢2lo = min({⇢2;P (R2
adj > R2

adj,obs; k, n, ⇢2) >= ↵/2}), (179)

⇢2hi = max({⇢2;P (R2
adj < R2

adj,obs; k, n, ⇢2) >= ↵/2}). (180)

The precise meaning of a confidence interval is a little subtle. One way to state it is

as follows:

For any population parameter ⇢2, there is a 95% probability that ⇢2 will

belong to the 95% confidence interval computed from a sample generated by

the distribution with parameter ⇢2.

Another way to look at this is to ask the question: What is the range of R2
adj values

whose confidence intervals contain a given ⇢2? The low end of this range, R2
adj,lo(⇢

2), is

the value of R2
adj which has cumulative probability ↵/2. In other words R2

adj,lo(⇢
2) is the

(100 ⇤↵/2)’th percentile of the distribution with population parameter ⇢2. The high end

of the range, R2
adj,hi(⇢

2), is the (100 ⇤ (1� ↵/2))’th percentile. This is illustrated for two

di↵erent choice of the pair (k, n) in Figure 6.

Figure 7 illustrates the relationship between the significance ranges of R2
adj as ⇢

2 varies

and the confidence intervals of ⇢2 as R2
adj varies.
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Figure 6: Probability density function for adjusted R-squared when population R-squared
parameter ⇢2 is fixed to equal to 0.5. Top plot has (k, n) = (5, 20); bottom plot has
(k, n) = (20, 700). Total area in red is ↵ = 5% of the area under the full curve. The
magenta line (on the horizontal axis going from left red region to the right red region)
covers the values of R2

adj in the middle of the probability distribution. R2
adj,lo(⇢

2) and
R2

adj,hi(⇢
2) are coordinate of the left and right ends of the magenta line.
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Figure 7: Lower and upper percentile curves at significance level ↵ = 5% as a function of
population R-squared. R2

adj,lo (green curve) is the ↵/2 percentile and R2
adj,hi (blue curve)

is the 1 � ↵/2 percentile. 95% confidence interval for ⇢2 for a given value of R2
adj is the

horizontal range of the line segment at height R2
adj going from the blue curve to the green

curve. Examples are drawn as dashed lines. R2
adj values for vertical magenta line at

⇢2 = 0.5 are the same as values for the magenta segment in Figure 6.
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